Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular vesicles round off communication in the nervous system

Key Points

  • The role of extracellular vesicles (EVs) in the nervous system is just beginning to be understood, but has been substantiated both in cell culture and in vivo. Major challenges in this young field include the establishment of a unified nomenclature for EVs and unified methods for their isolation, as well as the transition from studies in cell culture to those documenting their function in healthy and diseased organisms, a feat that is beginning to be achieved in invertebrate models.

  • The release and uptake of EVs in the nervous system by neurons and glial cells provide a novel mechanism of transcellular communication. Indeed, EVs are utilized for the transcellular transport of proteins, enzymes, lipids and RNA, thus influencing the physiology of the receiving cell. Neurons and glia also use EVs as a mechanism to regulate intracellular protein and RNA levels and for protein quality control.

  • Neurons can release EVs both in vivo and in cell culture, and this release is often regulated by depolarization or by agents that increase neuronal excitability. In turn, the release of EVs by glial subpopulations sometimes requires neuronal excitation.

  • Glial cells utilize EVs to regulate differentiation, myelin sheath formation and repair after injury. EVs also serve to propagate inflammatory signals in response to tissue damage and disease.

  • A role for EVs during communication in the nervous system of intact organisms has been demonstrated at the Drosophila melanogaster neuromuscular junction (NMJ) and in Caenorhabditis elegans sensory neurons. At the D. melanogaster NMJ, EVs are used to convey Wnt signals from neurons to muscles, and in C. elegans, such vesicles are used to transmit behaviourally relevant signals between organisms.

  • EVs are emerging as potent participants in the progression of disease, serving as vehicles to spread misfolded proteins in a prion-like fashion, transmitting tumorigenic activity and communicating neuroinflammation. Concomitantly, because of their unique properties, EVs are being explored as shuttles to target therapies.

Abstract

Functional neural competence and integrity require interactive exchanges among sensory and motor neurons, interneurons and glial cells. Recent studies have attributed some of the tasks needed for these exchanges to extracellular vesicles (such as exosomes and microvesicles), which are most prominently involved in shuttling reciprocal signals between myelinating glia and neurons, thus promoting neuronal survival, the immune response mediated by microglia, and synapse assembly and plasticity. Such vesicles have also been identified as important factors in the spread of neurodegenerative disorders and brain cancer. These extracellular vesicle functions add a previously unrecognized level of complexity to transcellular interactions within the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracellular vesicle formation and release.
Figure 2: Release of Evi-containing exosomes at the Drosophila melanogaster neuromuscular junction.

Similar content being viewed by others

References

  1. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014). An important review of the current understanding of EV biogenesis and secretion, including protocols for EV isolation and current challenges for the field.

    Article  CAS  PubMed  Google Scholar 

  2. Crescitelli, R. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles. http://dx.doi.org/10.3402/jev.v3402i3400.20677 (2013).

  3. Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Babst, M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 23, 452–457 (2011). An excellent discussion on the role of the ESCRT versus lipids in forming MVB ILVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lorent, J. H. & Levental, I. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. Chem. Phys. Lipids 192, 23–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Friend, D. S. Cytochemical staining of multivesicular body and Golgi vesicles. J. Cell Biol. 41, 269–279 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nilsson, P. et al. Autophagy-related protein 7 deficiency in amyloid β (Aβ) precursor protein transgenic mice decreases Aβ in the multivesicular bodies and induces Aβ accumulation in the Golgi. Am. J. Pathol. 185, 305–313 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Kolesnikova, L., Berghofer, B., Bamberg, S. & Becker, S. Multivesicular bodies as a platform for formation of the Marburg virus envelope. J. Virol. 78, 12277–12287 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gould, S. J. & Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v2i0.20389 (2013).

  11. Andreu, Z. & Yanez-Mo, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5, 442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Batrakova, E. V. & Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 219, 396–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guescini, M., Genedani, S., Stocchi, V. & Agnati, L. F. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 117, 1–4 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Miranda, K. C. et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78, 191–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cai, J. et al. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J. Mol. Cell. Biol. 5, 227–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  17. Gangoda, L., Boukouris, S., Liem, M., Kalra, H. & Mathivanan, S. Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics 15, 260–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Tietje, A., Maron, K. N., Wei, Y. & Feliciano, D. M. Cerebrospinal fluid extracellular vesicles undergo age dependent declines and contain known and novel non-coding RNAs. PLoS ONE 9, e113116 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiasserini, D. et al. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J. Proteom. 106, 191–204 (2014).

    Article  CAS  Google Scholar 

  20. Marzesco, A. M. et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 118, 2849–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Lachenal, G. et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46, 409–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Faure, J. et al. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642–648 (2006). A seminal study showing that primary cultured neurons secrete EVs in response to depolarization.

    Article  CAS  PubMed  Google Scholar 

  23. Chivet, M. et al. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J. Extracell. Vesicles 3, 24722 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Goldie, B. J. et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 42, 9195–9208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morel, L. et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J. Biol. Chem. 288, 7105–7116 (2013). A fine study documenting a potentially physiological action of an miRNA when transferred from neurons to astrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kramer-Albers, E. M. et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteom. Clin. Appl. 1, 1446–1461 (2007).

    Article  CAS  Google Scholar 

  27. Fruhbeis, C. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biol. 11, e1001604 (2013). An elegant study documenting a potential role of EVs in glia–neuron communication in the mammalian brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frohlich, D. et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bakhti, M., Winter, C. & Simons, M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J. Biol. Chem. 286, 787–796 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Fitzner, D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124, 447–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Lopez-Verrilli, M. A., Picou, F. & Court, F. A. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61, 1795–1806 (2013). An important study documenting the role of EVs liberated from Schwann cells during axonal regeneration.

    Article  PubMed  Google Scholar 

  33. Escudero, C. A. et al. The p75 neurotrophin receptor evades the endolysosomal route in neuronal cells, favouring multivesicular bodies specialised for exosomal release. J. Cell Sci. 127, 1966–1979 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bianco, F. et al. Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. J. Immunol. 174, 7268–7277 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Antonucci, F. et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 31, 1231–1240 (2012). An intriguing study showing that microglia- derived microvesicles might influence synaptic activity in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turola, E., Furlan, R., Bianco, F., Matteoli, M. & Verderio, C. Microglial microvesicle secretion and intercellular signaling. Front. Physiol. 3, 149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Darios, F. et al. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron 62, 683–694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gabrielli, M. et al. Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Rep. 16, 213–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Potolicchio, I. et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 175, 2237–2243 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hooper, C. et al. Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neurosci. 13, 144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freese, J. L., Pino, D. & Pleasure, S. J. Wnt signaling in development and disease. Neurobiol. Dis. 38, 148–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Glebov, K. et al. Serotonin stimulates secretion of exosomes from microglia cells. Glia 63, 626–634 (2015).

    Article  PubMed  Google Scholar 

  43. Cirrito, J. R. et al. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc. Natl Acad. Sci. USA 108, 14968–14973 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Bianco, F. et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 28, 1043–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, S. et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 31, 7275–7290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korkut, C. et al. Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron 77, 1039–1046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korkut, C. et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139, 393–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koles, K. et al. Mechanism of evenness interrupted (evi)-exosome release at synaptic boutons. J. Biol. Chem. 287, 16820–16834 (2012). Together with reference 47, this study provides in vivo evidence for the role of EVs in trans-synaptic communication of WNT signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Packard, M. et al. The Drosophila wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kerr, K. S. et al. Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction. J. Neurosci. 34, 2910–2920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Franch-Marro, X. et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat. Cell Biol. 10, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Savina, A., Vidal, M. & Colombo, M. I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115, 2505–2515 (2002).

    CAS  PubMed  Google Scholar 

  54. Savina, A., Fader, C. M., Damiani, M. T. & Colombo, M. I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Ataman, B. et al. Rapid activity-dependent modifications in synaptic structure and function require bidirectional wnt signaling. Neuron 57, 705–718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yoshihara, M., Adolfsen, B., Galle, K. T. & Littleton, J. T. Retrograde signaling by Syt 4 induces presynaptic release and synapse-specific growth. Science 310, 858–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Budnik, V. & Salinas, P. C. Wnt signaling during synaptic development and plasticity. Curr. Opin. Neurobiol. 21, 151–159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, L. & Wrana, J. L. The emerging role of exosomes in Wnt secretion and transport. Curr. Opin. Genet. Dev. 27, 14–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, J. et al. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24, 519–525 (2014). A pioneering study documenting the role of EVs in inter-organismal communication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maguire, J. E. et al. Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Mol. Biol. Cell. 26, 2823–2832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakano, I., Garnier, D., Minata, M. & Rak, J. Extracellular vesicles in the biology of brain tumour stem cells — implications for inter-cellular communication, therapy and biomarker development. Semin. Cell Dev. Biol. 40, 17–26 (2015). An excellent discussion on the role of EVs in brain tumours.

    Article  CAS  PubMed  Google Scholar 

  62. Pegtel, D. M., Peferoen, L. & Amor, S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130516 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grad, L. I., Fernando, S. M. & Cashman, N. R. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol. Dis. 77, 257–265 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Aguzzi, A. & Lakkaraju, A. K. Cell biology of prions and prionoids: a status report. Trends Cell Biol. 26, 40–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Guest, W. C., Plotkin, S. S. & Cashman, N. R. Toward a mechanism of prion misfolding and structural models of PrP(Sc): current knowledge and future directions. J. Toxicol. Environ. Health A 74, 154–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Eisele, Y. S. et al. Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grad, L. I. et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc. Natl Acad. Sci. USA 108, 16398–16403 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Coleman, B. M. & Hill, A. F. Extracellular vesicles — their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin. Cell Dev. Biol. 40, 89–96 (2015). An excellent discussion about the role of EVs in spreading misfolded proteins associated with neurodegenerative disorders.

    Article  CAS  PubMed  Google Scholar 

  71. Grad, L. I. et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc. Natl Acad. Sci. USA 111, 3620–3625 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Emmanouilidou, E. et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Melachroinou, K. et al. Deregulation of calcium homeostasis mediates secreted α-synuclein-induced neurotoxicity. Neurobiol. Aging 34, 2853–2865 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Rajendran, L. et al. Alzheimer's disease β-amyloid peptides are released in association with exosomes. Proc. Natl Acad. Sci. USA 103, 11172–11177 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Joshi, P. et al. Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ. 21, 582–593 (2014). An important review highlighting the complexity of protein forms involved in neurodegeneration and the role of EVs.

    Article  CAS  PubMed  Google Scholar 

  76. Sharples, R. A. et al. Inhibition of γ-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes. FASEB J. 22, 1469–1478 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Joshi, P., Benussi, L., Furlan, R., Ghidoni, R. & Verderio, C. Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction. Int. J. Mol. Sci. 16, 4800–4813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yuyama, K., Sun, H., Mitsutake, S. & Igarashi, Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem. 287, 10977–10989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Al-Nedawi, K., Meehan, B., Kerbel, R. S., Allison, A. C. & Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl Acad. Sci. USA 106, 3794–3799 (2009).

    Article  PubMed  Google Scholar 

  82. Bronisz, A. et al. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res. 74, 738–750 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Tominaga, N. et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat. Commun. 6, 6716 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carandini, T. et al. Microvesicles: what is the role in multiple sclerosis? Front. Neurol. 6, 111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Verderio, C. et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann. Neurol. 72, 610–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Minagar, A. & Alexander, J. S. Blood–brain barrier disruption in multiple sclerosis. Mult. Scler. 9, 540–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Saenz-Cuesta, M., Osorio-Querejeta, I. & Otaegui, D. Extracellular vesicles in multiple sclerosis: what are they telling us? Front. Cell. Neurosci. 8, 100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Prada, I., Furlan, R., Matteoli, M. & Verderio, C. Classical and unconventional pathways of vesicular release in microglia. Glia 61, 1003–1017 (2013).

    Article  PubMed  Google Scholar 

  89. Peferoen, L., Kipp, M., van der Valk, P., van Noort, J. M. & Amor, S. Oligodendrocyte–microglia cross-talk in the central nervous system. Immunology 141, 302–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Saenz-Cuesta, M. et al. Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomark. Med. 8, 653–661 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Paschon, V. et al. Interplay between exosomes, microRNAs and Toll-like receptors in brain disorders. Mol. Neurobiol. 11, 11 (2015).

    Google Scholar 

  92. Gupta, A. & Pulliam, L. Exosomes as mediators of neuroinflammation. J. Neuroinflammation 11, 68 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Frühbeis, C., Fröhlich, D. & Krämer-Albers, E. M. Emerging roles of exosomes in neuron–glia communication. Front. Physiol. 3, 119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. An, K. et al. Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol. Brain 6, 47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Polazzi, E. & Monti, B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog. Neurobiol. 92, 293–315 (2010).

    Article  PubMed  Google Scholar 

  96. De Maio, A. & Vazquez, D. Extracellular heat shock proteins: a new location, a new function. Shock 40, 239–246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tytell, M., Greenberg, S. G. & Lasek, R. J. Heat shock-like protein is transferred from glia to axon. Brain Res. 363, 161–164 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Taylor, A. R., Robinson, M. B., Gifondorwa, D. J., Tytell, M. & Milligan, C. E. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev. Neurobiol. 67, 1815–1829 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Pusic, A. D. & Kraig, R. P. Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination. Glia 62, 284–299 (2014).

    Article  PubMed  Google Scholar 

  100. Dugas, J. C. et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65, 597–611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhao, X. et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65, 612–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aryani, A. & Denecke, B. Exosomes as a nanodelivery system: a key to the future of neuromedicine? Mol. Neurobiol. http://dx.doi.org/10.1007/s12035-014-9054-5 (2014).

  103. Zhuang, X. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Yeo, R. W. et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 65, 336–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Park, J. S., Suryaprakash, S., Lao, Y. H. & Leong, K. W. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 84, 3–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xin, H. et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33, 1711–1715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Katsuda, T. et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci. Rep. 3, 1197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pusic, A. D., Pusic, K. M., Clayton, B. L. & Kraig, R. P. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J. Neuroimmunol. 266, 12–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Haney, M. J. et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J. Control. Release 207, 18–30 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schwab, A. et al. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front. Microbiol. 6, 1132 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.B. is supported by a US National Institutes of Health grant (R37 MH070000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Budnik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

EVpedia

Vesiclepedia

PowerPoint slides

Glossary

Protein processing

Protein processing may involve protein folding, covalent modifications (for example, phosphorylation and acetylation) and/or cleavage of the protein product into a smaller biologically active protein.

Reactive microglia

In the injured or disease brain, glia can become reactive by proliferating and upregulating a number of cytoskeletal components, leading to the formation of glial scars, which replace the damaged brain cells.

Transforming proteins

Proteins that cause a cell to be transformed into a neoplastic cell, which undergoes uncontrolled cell division.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budnik, V., Ruiz-Cañada, C. & Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17, 160–172 (2016). https://doi.org/10.1038/nrn.2015.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2015.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing