Spiral waves of spreading depression in the isolated chicken retina

J Neurobiol. 1983 Sep;14(5):353-63. doi: 10.1002/neu.480140503.

Abstract

Existence of the theoretically predicted spiral waves of excitation in intact two-dimensional networks of excitable elements has been experimentally confirmed in the isolated chicken retina. The preparation supports the waves of Leão's spreading depression (SD) the concentric propagation of which from the point of origin can be directly observed as a change of the optical properties of the retinal tissue. The propagation rate of 3.7 mm/min (35 degrees C) decreased to 1.5 mm/min for SD waves elicited during relative refractory period. When a several-mm long segment of the SD wave had been blocked by anodal polarization, the laterally opened ends of the wavefront started to spread after termination of polarization into the previously blocked tissue, gradually turning around and penetrating into the region recovering from the original SD. One or two simultaneously generated spiral waves of SD continued to rotate for several cycles. Spiral SD could also be elicited by punctiform cathodal polarization (1 mA) applied to the SD wave-rear. Since the new SD wave could only spread into the recovering tissue it formed a laterally open wavefront, the free ends of which eventually turned around and started spiral SD. With continued reverberation the nucleus of the spiral SD wave gradually migrated across the retina until it approached an obstacle (e.g., pecten) which stopped further spiral propagation. Spiral SD waves were elicited in 31 retinal preparations and lasted for 4.5 cycles on the average. Average cycle duration was 4.7 min. Spontaneous spiral SD waves were observed in preparations incubated in Mg2+-free media. The spiral SD waves in retina are compared with mathematical models of analogous phenomena. It is argued that spiral SD waves probably exist in the cerebral cortex of rats and account for generation of repetitive SD waves sometimes elicited by overlapping stimulation of two cortical regions.

MeSH terms

  • Animals
  • Chickens / physiology*
  • Electrophysiology
  • Mathematics
  • Models, Neurological
  • Retina / physiology*