Overlapping and distinct contributions of stimulus location and of spatial context to nonspatial visual short-term memory

J Neurophysiol. 2019 Apr 1;121(4):1222-1231. doi: 10.1152/jn.00062.2019. Epub 2019 Mar 11.

Abstract

Stimulus location is not always informative during visual short-term memory (VSTM) for nonspatial features. Nevertheless, there is considerable evidence for the automatic encoding and retention of location information, regardless of its task relevance. To explore the functional and neural bases of the representation of spatial context in VSTM for nonspatial information, functional magnetic resonance imaging was performed while subjects performed delayed recall for the orientation of individual stimuli. Stimulus location varied across trials, and although this information was irrelevant for task performance, multivariate pattern analysis decoding of stimulus location sustained across trials, and also the decoding strength, predicted the precision of the recall of orientation. The influence of spatial context on the representation of orientation was operationalized by comparing the orientation reconstructions with multivariate inverted encoding models (IEM) trained in location context-dependent vs. -independent data. Although orientation reconstructions were robust for both location-dependent and location-independent IEMs, they were markedly stronger for the former. Furthermore, the functional relevance of location context was demonstrated by the fact that only the location-dependent neural representations of stimulus orientation predicted recall precision. NEW & NOTEWORTHY Neural representation strength of stimulus location predicts the precision of visual short-term memory (VSTM) recall of nonspatial stimulus, even when this information is task irrelevant. Neural representations of nonspatial stimuli that incorporate location context are stronger than those that do not, and only the former representations are strongly linked to behavior. The contributions to nonspatial VSTM performance of the representation of location context are at least partly distinct from those of the representation of stimulus content.

Keywords: inverted encoding model; location context; visual short-term memory.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Brain / physiology*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Memory, Short-Term*
  • Spatial Memory*
  • Visual Perception*