Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains

Curr Biol. 2018 Jul 9;28(13):2181-2189.e4. doi: 10.1016/j.cub.2018.05.045. Epub 2018 Jun 28.

Abstract

It is widely believed that tau stabilizes microtubules in the axon [1-3] and, hence, that disease-induced loss of tau from axonal microtubules leads to their destabilization [3-5]. An individual microtubule in the axon has a stable domain and a labile domain [6-8]. We found that tau is more abundant on the labile domain, which is inconsistent with tau's proposed role as a microtubule stabilizer. When tau is experimentally depleted from cultured rat neurons, the labile microtubule mass of the axon drops considerably, the remaining labile microtubule mass becomes less labile, and the stable microtubule mass increases. MAP6 (also called stable tubule-only polypeptide), which is normally enriched on the stable domain [9], acquires a broader distribution across the microtubule when tau is depleted, providing a potential explanation for the increase in stable microtubule mass. When MAP6 is depleted, the labile microtubule mass becomes even more labile, indicating that, unlike tau, MAP6 is a genuine stabilizer of axonal microtubules. We conclude that tau is not a stabilizer of axonal microtubules but is enriched on the labile domain of the microtubule to promote its assembly while limiting the binding to it of genuine stabilizers, such as MAP6. This enables the labile domain to achieve great lengths without being stabilized. These conclusions are contrary to tau dogma.

Keywords: MAP6; axon; microtubule; microtubule stability; neuron; tau.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Axons / metabolism*
  • Cells, Cultured
  • Microtubules / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • tau Proteins / metabolism*

Substances

  • tau Proteins