Neurobiological Basis of Individual Variation in Stimulus-Reward Learning

Curr Opin Behav Sci. 2017 Feb:13:178-185. doi: 10.1016/j.cobeha.2016.12.004. Epub 2017 Jan 5.

Abstract

Cues in the environment can guide behavior in adaptive ways, leading one towards valuable resources such as food, water, or a potential mate. However, cues in the environment may also serve as powerful motivators that lead to maladaptive patterns of behavior, such as addiction. Importantly, and central to this article, there is considerable individual variation in the extent to which reward cues gain motivational control over behavior. Here we describe an animal model that captures this individual variation, allowing us to better understand the psychological and neurobiological processes that contribute to cue-evoked behaviors. When a discrete cue is paired with a food reward in a Pavlovian manner it acquires greater control over motivated behavior in some rats ("sign-trackers, STs) than in others ("goal-trackers", GTs). We review studies that have exploited this animal model to parse the neurobiological mechanisms involved in learning associations between stimuli vs. those involved in attributing incentive salience to those same stimuli. The latter seems to be dependent on dopamine and subcortical circuits, whereas the former may engage more cortical "top-down" mechanisms.