Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. I. afferents

Hippocampus. 2016 Sep;26(9):1189-212. doi: 10.1002/hipo.22603. Epub 2016 May 24.

Abstract

In this study the subcortical afferents for the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA) were characterized. We analyzed 33 retrograde tract-tracing experiments distributed across the five regions. For each experiment, we estimated the total numbers, percentages, and densities of labeled cells in 36 subcortical structures and nuclei distributed across septum, basal ganglia, claustrum, amygdala, olfactory structures, thalamus, and hypothalamus. We found that the complement of subcortical inputs differs across the five regions, especially the PER and POR. The PER receives input from the reuniens, suprageniculate, and medial geniculate thalamic nuclei as well as the amygdala. Overall, the subcortical inputs to the PER were consistent with a role in perception, multimodal processing, and the formation of associations that include the motivational significance of individual items and objects. Subcortical inputs to the POR were dominated by the dorsal thalamus, particularly the lateral posterior nucleus, a region implicated in visuospatial attention. The complement of subcortical inputs to the POR is consistent with a role in representing and monitoring the local spatial context. We also report that, in addition to the PER, the LEA and the medial band of the MEA also receive strong amygdala input. In contrast, subcortical input to the POR and the MEA lateral band includes much less amygdala input and is dominated by dorsal thalamic nuclei, particularly nuclei involved in spatial information processing. Thus, some subcortical inputs are consistent with the view that there is functional differentiation along the septotemporal axis of the hippocampus, but others provide considerable integration. Overall, we conclude that the patterns of subcortical inputs to the PER, POR, and the entorhinal LEA and MEA provide further evidence for functional differentiation in the medial temporal lobe. © 2016 Wiley Periodicals, Inc.

Keywords: anatomy; connectivity; memory; parahippocampal; retrograde.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Afferent Pathways / cytology
  • Animals
  • Entorhinal Cortex / cytology*
  • Male
  • Neuroanatomical Tract-Tracing Techniques
  • Neurons, Afferent / cytology*
  • Perirhinal Cortex / cytology*
  • Rats, Sprague-Dawley