Reward signal in a recurrent circuit drives appetitive long-term memory formation

Elife. 2015 Nov 17:4:e10719. doi: 10.7554/eLife.10719.

Abstract

Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity.

Keywords: D. melanogaster; behavioral genetics; long-term memory; neuroscience; reward circuit.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Appetitive Behavior
  • Conditioning, Classical
  • Dopaminergic Neurons / physiology
  • Drosophila / physiology*
  • Memory, Long-Term
  • Neural Pathways
  • Recurrence