Comparison of the effects of transcranial random noise stimulation and transcranial direct current stimulation on motor cortical excitability

J ECT. 2015 Mar;31(1):67-72. doi: 10.1097/YCT.0000000000000155.

Abstract

Objective: The objective of this study was to examine the effect of transcranial random noise stimulation (tRNS) with and without a direct current (DC) offset on motor cortical excitability and compare results to transcranial DC stimulation (tDCS).

Methods: Fifteen healthy participants were tested in a within-subjects design. Motor-evoked potentials were measured before and up to 90 minutes after stimulation using transcranial magnetic stimulation. Five stimulation conditions were examined: sham, 1-mA tDCS, 2-mA tDCS, 2-mA tRNS (with no DC offset), and 2-mA tRNS + 1-mA DC offset.

Results: There were no significant differences between the stimulation conditions. An analysis of individual stimulation conditions found that there was a significant increase in motor-evoked potential amplitudes after 1-mA tDCS, 2-mA tDCS, and 2-mA tRNS + DC offset when compared with baseline. Sham and 2-mA tRNS did not result in changes in cortical excitability.

Conclusions: Although differences between the stimulation conditions did not reach a statistical significance, the findings suggest that stimulation involving a DC (tDCS and tRNS + DC offset) but not solely tRNS is more likely to lead to increases in cortical excitability.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Evoked Potentials, Motor / physiology*
  • Female
  • Humans
  • Male
  • Motor Cortex / physiology*
  • Transcranial Direct Current Stimulation / methods*
  • Young Adult