Loss of MEC-17 leads to microtubule instability and axonal degeneration

Cell Rep. 2014 Jan 16;6(1):93-103. doi: 10.1016/j.celrep.2013.12.004. Epub 2013 Dec 27.

Abstract

Axonal degeneration arises as a consequence of neuronal injury and is a common hallmark of a number of neurodegenerative diseases. However, the genetic causes and the cellular mechanisms that trigger this process are still largely unknown. Based on forward genetic screening in C. elegans, we have identified the α-tubulin acetyltransferase gene mec-17 as causing spontaneous, adult-onset, and progressive axonal degeneration. Loss of MEC-17 leads to microtubule instability, a reduction in mitochondrial number, and disrupted axonal transport, with altered distribution of both mitochondria and synaptic components. Furthermore, mec-17-mediated axonal degeneration occurs independently from its acetyltransferase domain; is enhanced by mutation of coel-1, a tubulin-associated molecule; and correlates with the animal's body length. This study therefore identifies a critical role for the conserved microtubule-associated protein MEC-17 in preserving axon integrity and preventing axonal degeneration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetyltransferases / genetics
  • Acetyltransferases / metabolism*
  • Animals
  • Axonal Transport
  • Axons / metabolism*
  • Axons / pathology
  • Caenorhabditis elegans / cytology
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism*
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism*
  • Microtubules / metabolism*
  • Mitochondria / metabolism
  • Mutation

Substances

  • Caenorhabditis elegans Proteins
  • Acetyltransferases
  • MEC-17 protein, C elegans