Neural systems for landmark-based wayfinding in humans

Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120533. doi: 10.1098/rstb.2012.0533. Print 2014 Feb 5.

Abstract

Humans and animals use landmarks during wayfinding to determine where they are in the world and to guide their way to their destination. To implement this strategy, known as landmark-based piloting, a navigator must be able to: (i) identify individual landmarks, (ii) use these landmarks to determine their current position and heading, (iii) access long-term knowledge about the spatial relationships between locations and (iv) use this knowledge to plan a route to their navigational goal. Here, we review neuroimaging, neuropsychological and neurophysiological data that link the first three of these abilities to specific neural systems in the human brain. This evidence suggests that the parahippocampal place area is critical for landmark recognition, the retrosplenial/medial parietal region is centrally involved in localization and orientation, and both medial temporal lobe and retrosplenial/medial parietal lobe regions support long-term spatial knowledge.

Keywords: functional magnetic resonance imaging; hippocampus; parahippocampal cortex; parietal lobe; retrosplenial cortex; spatial navigation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain / physiology*
  • Brain Mapping / methods*
  • Humans
  • Magnetic Resonance Imaging
  • Neurons / physiology*
  • Space Perception / physiology*
  • Spatial Behavior / physiology*