Structural plasticity of dendritic spines

Curr Opin Neurobiol. 2012 Jun;22(3):383-8. doi: 10.1016/j.conb.2011.09.002. Epub 2011 Sep 28.

Abstract

Dendritic spines are small mushroom-like protrusions arising from neurons where most excitatory synapses reside. Their peculiar shape suggests that spines can serve as an autonomous postsynaptic compartment that isolates chemical and electrical signaling. How neuronal activity modifies the morphology of the spine and how these modifications affect synaptic transmission and plasticity are intriguing issues. Indeed, the induction of long-term potentiation (LTP) or depression (LTD) is associated with the enlargement or shrinkage of the spine, respectively. This structural plasticity is mainly controlled by actin filaments, the principal cytoskeletal component of the spine. Here we review the pioneering microscopic studies examining the structural plasticity of spines and propose how changes in actin treadmilling might regulate spine morphology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Dendritic Spines / diagnostic imaging*
  • Models, Biological
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*
  • Neurons / ultrastructure*
  • Ultrasonography