Purinergic modulation of preBötzinger complex inspiratory rhythm in rodents: the interaction between ATP and adenosine

J Physiol. 2011 Sep 15;589(Pt 18):4583-600. doi: 10.1113/jphysiol.2011.210930. Epub 2011 Jul 25.

Abstract

ATP signalling in the CNS is mediated by a three-part system comprising the actions of ATP (and ADP) at P2 receptors (P2Rs), adenosine (ADO) at P1 receptors (P1Rs), and ectonucleotidases that degrade ATP into ADO. ATP excites preBötzinger complex (preBötC) inspiratory rhythm-generating networks where its release attenuates the hypoxic depression of breathing. Its metabolite, ADO, inhibits breathing through unknown mechanisms that may involve the preBötC. Our objective is to understand the dynamics of this signalling system and its influence on preBötC networks. We show that the preBötC of mouse and rat is sensitive to P2Y(1) purinoceptor (P2Y(1)R) activation, responding with a >2-fold increase in frequency. Remarkably, the mouse preBötC is insensitive to ATP. Only after block of A(1) ADORs is the ATP-evoked, P2Y(1)R-mediated frequency increase observed. This demonstrates that ATP is rapidly degraded to ADO, which activates inhibitory A(1)Rs, counteracting the P2Y(1)R-mediated excitation. ADO sensitivity of mouse preBötC was confirmed by a frequency decrease that was absent in rat. Differential ectonucleotidase activities are likely to contribute to the negligible ATP sensitivity of mouse preBötC. Real-time PCR analysis of ectonucleotidase isoforms in preBötC punches revealed TNAP (degrades ATP to ADO) or ENTPDase2 (favours production of excitatory ADP) as the primary constituent in mouse and rat, respectively. These data further establish the sensitivity of this vital network to P2Y(1)R-mediated excitation, emphasizing that individual components of the three-part signalling system dramatically alter network responses to ATP. Data also suggest therapeutic potential may derive from methods that alter the ATP-ADO balance to favour the excitatory actions of ATP.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / pharmacology
  • Adenosine / physiology*
  • Adenosine Triphosphate / pharmacology
  • Adenosine Triphosphate / physiology*
  • Animals
  • Animals, Newborn
  • Electrophysiological Phenomena
  • Hypoxia / physiopathology
  • Inhalation / drug effects
  • Inhalation / physiology*
  • Medulla Oblongata / drug effects
  • Medulla Oblongata / physiology*
  • Mice
  • Models, Animal
  • Periodicity*
  • Rats, Sprague-Dawley
  • Receptors, Purinergic P2Y1 / drug effects
  • Receptors, Purinergic P2Y1 / physiology*
  • Respiratory Center / drug effects
  • Respiratory Center / physiology*
  • Respiratory Mechanics / drug effects
  • Respiratory Mechanics / physiology
  • Signal Transduction / drug effects
  • Signal Transduction / physiology

Substances

  • Receptors, Purinergic P2Y1
  • Adenosine Triphosphate
  • Adenosine