Role of intrinsic properties in Drosophila motoneuron recruitment during fictive crawling

J Neurophysiol. 2010 Sep;104(3):1257-66. doi: 10.1152/jn.00298.2010. Epub 2010 Jun 23.

Abstract

Motoneurons in most organisms conserve a division into low-threshold and high-threshold types that are responsible for generating powerful and precise movements. Drosophila 1b and 1s motoneurons may be analogous to low-threshold and high-threshold neurons, respectively, based on data obtained at the neuromuscular junction, although there is little information available on intrinsic properties or recruitment during behavior. Therefore in situ whole cell patch-clamp recordings were used to compare parameters of 1b and 1s motoneurons in Drosophila larvae. We find that resting membrane potential, voltage threshold, and delay-to-spike distinguish 1b from 1s motoneurons. The longer delay-to-spike in 1s motoneurons is a result of the shal-encoded A-type K(+) current. Functional differences between 1b and 1s motoneurons are behaviorally relevant because a higher threshold and longer delay-to-spike are observed in MNISN-1s in pairwise whole cell recordings of synaptically evoked activity during bouts of fictive locomotion.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Drosophila melanogaster
  • Gene Knockdown Techniques
  • Membrane Potentials / physiology
  • Motor Activity / physiology*
  • Motor Neurons / physiology*
  • Recruitment, Neurophysiological / physiology*