Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopically-mapped stimulus locations

Hum Brain Mapp. 2009 Apr;30(4):1290-309. doi: 10.1002/hbm.20597.

Abstract

Studying the human visual system with high temporal resolution is a significant challenge due to the limitations of the available, noninvasive measurement tools. MEG and EEG provide the millisecond temporal resolution necessary for answering questions about intracortical communication involved in visual processing, but source estimation is ill-posed and unreliable when multiple; simultaneously active areas are located close together. To address this problem, we have developed a retinotopy-constrained source estimation method to calculate the time courses of activation in multiple visual areas. Source estimation was disambiguated by: (1) fixing MEG/EEG generator locations and orientations based on fMRI retinotopy and surface tessellations constructed from high-resolution MRI images; and (2) solving for many visual field locations simultaneously in MEG/EEG responses, assuming source current amplitudes to be constant or varying smoothly across the visual field. Because of these constraints on the solutions, estimated source waveforms become less sensitive to sensor noise or random errors in the specification of the retinotopic dipole models. We demonstrate the feasibility of this method and discuss future applications such as studying the timing of attentional modulation in individual visual areas.

MeSH terms

  • Brain Mapping*
  • Electroencephalography / methods*
  • Evoked Potentials, Visual / physiology*
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods
  • Magnetoencephalography / methods*
  • Male
  • Models, Neurological
  • Nonlinear Dynamics
  • Oxygen / blood
  • Photic Stimulation / methods
  • Retina / physiology*
  • Visual Cortex / anatomy & histology
  • Visual Cortex / blood supply
  • Visual Cortex / physiology*
  • Visual Pathways / anatomy & histology
  • Visual Pathways / blood supply
  • Visual Pathways / physiology
  • Young Adult

Substances

  • Oxygen