What does phase information of oscillatory brain activity tell us about cognitive processes?

Neurosci Biobehav Rev. 2008 Jul;32(5):1001-13. doi: 10.1016/j.neubiorev.2008.03.014. Epub 2008 Apr 18.

Abstract

The electroencephalogram (EEG) bears the possibility to investigate oscillatory processes in the human brain. In the animal brain it has been shown that the phase of cortical oscillations is related to the exact timing of neural activity. The potential role of oscillatory phase and phase synchronization for the explanation of cortical information processing has been largely underestimated in the human EEG until now. Here it is argued that EEG phase (synchronization) reflects the exact timing of communication between distant but functionally related neural populations, the exchange of information between global and local neuronal networks, and the sequential temporal activity of neural processes in response to incoming sensory stimuli. Three different kinds of phase synchronization are discussed: (i) phase coupling between brain sites, (ii) phase synchronization across frequencies, and (iii) phase-locking to external events. In this review recent work is presented demonstrating that EEG phase synchronization provides valuable information about the neural correlates of various cognitive processes, and that it leads to a better understanding of how memory and attention processes are interrelated.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cerebral Cortex / physiology*
  • Cognition / physiology*
  • Cortical Synchronization*
  • Humans
  • Nerve Net / physiology
  • Neural Pathways / physiology
  • Periodicity*