Forebrain evolution in bony fishes

Brain Res Bull. 2008 Mar 18;75(2-4):191-205. doi: 10.1016/j.brainresbull.2007.10.058. Epub 2007 Nov 20.

Abstract

The bony fishes consist of ray-finned fishes and lobe-finned fishes. In ray-finned fishes, the forebrain forms a morphocline from the cladistian bichirs through teleosts regarding the number and increasing complexity of pallial connections. The nuclei of the posterior tubercle parallel this increase in complexity, but the dorsal thalamic nuclei do not. The primary targets of the dorsal thalamic nuclei are the subpallial nuclei, whereas the primary targets of the posterior tubercle are various pallial divisions. Primitively, nucleus medianus is the primary projection nucleus of the posterior tubercle. It is either reduced or lost in teleosts, and its role is taken over by the preglomerular complex, which appears to develop from proliferative zones in both the thalamic alar plate and the posterior tubercle. Although there are numerous hodological data for the pallium in ray-finned fishes, there is no consensus regarding its homologies with other vertebrates. In contrast to ray-finned fishes, very few experimental data exist for lobe-finned fishes. The coelacanth, Latimeria, is extremely rare, and lungfishes are the best source for new experimental data. At this point, there are sufficient data to suggest that lungfishes are characterized by a pallium that is divided into four components, separate dorsal and ventral striatopallidal systems, and an amygdala that consists of anterior, central, lateral, and medial nuclei. The data suggest that telencephalic organization in lungfishes is far more similar to that in amphibians than was previously suspected.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Biological Evolution*
  • Fishes / anatomy & histology*
  • Fishes / physiology*
  • Prosencephalon / physiology*