The CA3 "backprojection" to the dentate gyrus

Prog Brain Res. 2007:163:627-37. doi: 10.1016/S0079-6123(07)63034-9.

Abstract

The hippocampus is typically described in the context of the trisynaptic circuit, a pathway that relays information from the perforant path to the dentate gyrus, dentate to area CA3, and CA3 to area CA1. Associated with this concept is the assumption that most hippocampal information processing occurs along the trisynaptic circuit. However, the entorhinal cortex may not be the only major extrinsic input to consider, and the trisynaptic circuit may not be the only way information is processed in hippocampus. Area CA3 receives input from a variety of sources, and may be as much of an "entry point" to hippocampus as the dentate gyrus. The axon of CA3 pyramidal cells targets diverse cell types, and has commissural projections, which together make it able to send information to much more of the hippocampus than granule cells. Therefore, CA3 pyramidal cells seem better designed to spread information through hippocampus than the granule cells. From this perspective, CA3 may be a point of entry that receives information which needs to be "broadcasted," whereas the dentate gyrus may be a point of entry that receives information with more selective needs for hippocampal processing. One aspect of the argument that CA3 pyramidal cells have a widespread projection is based on a part of its axonal arbor that has received relatively little attention, the collaterals that project in the opposite direction to the trisynaptic circuit, "back" to the dentate gyrus. The evidence for this "backprojection" to the dentate gyrus is strong, particularly in area CA3c, the region closest to the dentate gyrus, and in temporal hippocampus. The influence on granule cells is indirect, through hilar mossy cells and GABAergic neurons of the dentate gyrus, and appears to include direct projections in the case of CA3c pyramidal cells of ventral hippocampus. Physiological studies suggest that normally area CA3 does not have a robust excitatory influence on granule cells, but serves instead to inhibit it by activating dentate gyrus GABAergic neurons. Thus, GABAergic inhibition normally controls the backprojection to dentate granule cells, analogous to the way GABAergic inhibition appears to control the perforant path input to granule cells. From this perspective, the dentate gyrus has two robust glutamatergic inputs, entorhinal cortex and CA3, and two "gates," or inhibitory filters that reduce the efficacy of both inputs, keeping granule cells relatively quiescent. When GABAergic inhibition is reduced experimentally, or under pathological conditions, CA3 pyramidal cells activate granule cells reliably, and do so primarily by disynaptic excitation that is mediated by mossy cells. We suggest that the backprojection has important functions normally that are dynamically regulated by nonprincipal cells of the dentate gyrus. Slightly reduced GABAergic input would lead to increased polysynaptic associative processing between CA3 and the dentate gyrus. Under pathological conditions associated with loss of GABAergic interneurons, the backprojection may support reverberatory excitatory activity between CA3, mossy cells, and granule cells, possibly enhanced by mossy fiber sprouting. In this case, the backprojection could be important to seizure activity originating in hippocampus, and help explain the seizure susceptibility of ventral hippocampus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Dentate Gyrus / cytology*
  • Dentate Gyrus / physiology*
  • Neural Pathways / physiology*
  • Pyramidal Cells / physiology
  • Synaptic Transmission / physiology*