Auditory inhibitory gating in medial prefrontal cortex: Single unit and local field potential analysis

Neuroscience. 2006 Aug 11;141(1):47-65. doi: 10.1016/j.neuroscience.2006.03.040. Epub 2006 May 3.

Abstract

Medial prefrontal cortex is a crucial region involved in inhibitory processes. Damage to the medial prefrontal cortex can lead to loss of normal inhibitory control over motor, sensory, emotional and cognitive functions. The goal of the present study was to examine the basic properties of inhibitory gating in this brain region in rats. Inhibitory gating has recently been proposed as a neurophysiological assay for sensory filters in higher brain regions that potentially enable or disable information throughput. This perspective has important clinical relevance due to the findings that gating is dramatically impaired in individuals with emotional and cognitive impairments (i.e. schizophrenia). We used the standard inhibitory gating two-tone paradigm with a 500 ms interval between tones and a 10 s interval between tone pairs. We recorded both single unit and local field potentials from chronic microwire arrays implanted in the medial prefrontal cortex. We investigated short-term (within session) and long-term (between session) variability of auditory gating and additionally examined how altering the interval between the tones influenced the potency of the inhibition. The local field potentials displayed greater variability with a reduction in the amplitudes of the tone responses over both the short and long-term time windows. The decrease across sessions was most intense for the second tone response (test tone) leading to a more robust gating (lower T/C ratio). Surprisingly, single unit responses of different varieties retained similar levels of auditory responsiveness and inhibition in both the short and long-term analysis. Neural inhibition decreased monotonically related to the increase in intertone interval. This change in gating was most consistent in the local field potentials. Subsets of single unit responses did not show the lack of inhibition even for the longer intertone intervals tested (4 s interval). These findings support the idea that the medial prefrontal cortex is an important site where early inhibitory functions reside and potentially mediate psychological processes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods
  • Action Potentials / physiology*
  • Animals
  • Brain Mapping
  • Evoked Potentials, Auditory / physiology*
  • Neural Inhibition / physiology*
  • Neurons / physiology*
  • Prefrontal Cortex / cytology*
  • Prefrontal Cortex / physiology*
  • Rats
  • Reaction Time / physiology
  • Reflex, Startle / physiology
  • Time Factors