A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat

J Physiol. 1992 Dec:458:539-60. doi: 10.1113/jphysiol.1992.sp019433.

Abstract

1. Vestibular and prepositus hypoglossi (PH) neurones projecting to the abducens (ABD) nucleus were recorded in the alert cat. Their discharge characteristics were analysed to ascertain the origin of the horizontal eye position signal present in ABD neurones. 2. Neurones were classified according to: their location with respect to the ABD nucleus; their antidromic activation from the ABD nucleus; the synaptic field potential they induced in the ABD nucleus with the spike-triggered averaging technique; and their activity during spontaneous and vestibularly induced eye movements. 3. Vestibular neurones projecting to the ABD nucleus were located in the rostral medial vestibular nucleus. They were excitatory on the contralateral and inhibitory on the ipsilateral ABD neurones. Both types of premotor vestibular neurone showed a firing rate weakly related to eye position, increasing for eye fixations in the contralateral on-direction, and decreasing with ipsilateral fixation. Position sensitivity during eye fixations was (means +/- S.D.) 1.8 +/- 0.9 spikes s-1 deg-1 for excitatory neurones and 2.2 +/- 1.3 spikes s-1 deg-1 for inhibitory neurones. Firing rate exhibited a high variability during eye fixations. Their responses during saccades in the off-direction were characterized by a pause that, although less defined, was occasionally present during saccades in the on-direction. Eye velocity sensitivity during spontaneous saccades in the on-direction was 0.17 +/- 0.15 spikes s-1 deg-1 s-1 for excitatory neurones and 0.15 +/- 0.07 spikes s-1 deg-1 s-1 for inhibitory vestibular neurones. During sinusoidal head stimulation at 0.2 Hz, vestibular neurones showed a type I discharge rate with a phase lead over eye position of 86.0 +/- 14.1 deg for excitatory and 80.2 +/- 12.5 deg for inhibitory neurones. Position sensitivity during vestibular stimulation did not differ significantly from values obtained for spontaneous eye movements. However, the velocity sensitivity of premotor vestibular neurones during head rotation was significantly higher (1.6 +/- 0.2 spikes s-1 deg-1 s-1 for excitatory and 1.5 +/- 0.3 spikes s-1 deg-1 s-1 for inhibitory neurones) than during spontaneous eye movements. 4. PH neurones projecting to the ABD nucleus were located in the rostral one-third of the nucleus. These neurones were excitatory on the ipsilateral and inhibitory on the contralateral ABD nucleus. Their firing rates were correlated mainly with eye position, increasing for abducting eye positions of the ipsilateral eye and decreasing with adduction movements.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abducens Nerve / physiology*
  • Animals
  • Brain Mapping
  • Cats
  • Evoked Potentials, Visual / physiology
  • Eye Movements / physiology
  • Fixation, Ocular
  • Hypoglossal Nerve / physiology*
  • Neural Pathways / physiology*
  • Pons / physiology*
  • Saccades / physiology
  • Vestibulocochlear Nerve / physiology*