Semantic integration in sentences and discourse: evidence from the N400

J Cogn Neurosci. 1999 Nov;11(6):657-71. doi: 10.1162/089892999563724.

Abstract

In two ERP experiments we investigated how and when the language comprehension system relates an incoming word to semantic representations of an unfolding local sentence and a wider discourse. In Experiment 1, subjects were presented with short stories. The last sentence of these stories occasionally contained a critical word that, although acceptable in the local sentence context, was semantically anomalous with respect to the wider discourse (e.g., Jane told the brother that he was exceptionally slow in a discourse context where he had in fact been very quick). Relative to coherent control words (e.g., quick), these discourse-dependent semantic anomalies elicited a large N400 effect that began at about 200 to 250 msec after word onset. In Experiment 2, the same sentences were presented without their original story context. Although the words that had previously been anomalous in discourse still elicited a slightly larger average N400 than the coherent words, the resulting N400 effect was much reduced, showing that the large effect observed in stories depended on the wider discourse. In the same experiment, single sentences that contained a clear local semantic anomaly elicited a standard sentence-dependent N400 effect (e.g., Kutas &Hillyard, 1980). The N400 effects elicited in discourse and in single sentences had the same time course, overall morphology, and scalp distribution. We argue that these findings are most compatible with models of language processing in which there is no fundamental distinction between the integration of a word in its local (sentence-level) and its global (discourse-level) semantic context.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Evoked Potentials / physiology*
  • Female
  • Humans
  • Language Tests
  • Language*
  • Male
  • Mental Processes / physiology*