Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding

J Comp Neurol. 1999 Oct 4;412(4):563-605.

Abstract

The recently discovered neuropeptide orphanin FQ (OFQ), and its opioid receptor-like (ORL1) receptor, exhibit structural features suggestive of the micro, kappa, and delta opioid systems. The anatomic distribution of OFQ immunoreactivity and mRNA expression has been reported recently. In the present analysis, we compare the distribution of orphanin receptor mRNA expression with that of orphanin FQ binding at the ORL1 receptor in the adult rat central nervous system (CNS). By using in vitro receptor autoradiography with (125)I-[(14)Tyr]-OFQ as the radioligand, orphanin receptor binding was analyzed throughout the rat CNS. Orphanin binding sites were densest in several cortical regions, the anterior olfactory nucleus, lateral septum, ventral forebrain, several hypothalamic nuclei, hippocampal formation, basolateral and medial amygdala, central gray, pontine nuclei, interpeduncular nucleus, substantia nigra, raphe complex, locus coeruleus, vestibular nuclear complex, and the spinal cord. By using in situ hybridization, cells expressing ORL1 mRNA were most numerous throughout multiple cortical regions, the anterior olfactory nucleus, lateral septum, endopiriform nucleus, ventral forebrain, multiple hypothalamic nuclei, nucleus of the lateral olfactory tract, medial amygdala, hippocampal formation, substantia nigra, ventral tegmental area, central gray, raphe complex, locus coeruleus, multiple brainstem motor nuclei, inferior olive, deep cerebellar nuclei, vestibular nuclear complex, nucleus of the solitary tract, reticular formation, dorsal root ganglia, and spinal cord. The diffuse distribution of ORL1 mRNA and binding supports an extensive role for orphanin FQ in a multitude of CNS functions, including motor and balance control, reinforcement and reward, nociception, the stress response, sexual behavior, aggression, and autonomic control of physiologic processes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain Chemistry / physiology
  • Central Nervous System / chemistry*
  • Central Nervous System / metabolism
  • Immunohistochemistry
  • In Situ Hybridization
  • Iodine Radioisotopes
  • Male
  • Nociceptin
  • Nociceptin Receptor
  • Opioid Peptides / metabolism
  • RNA, Messenger / biosynthesis*
  • Radioligand Assay
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Opioid / analysis*
  • Receptors, Opioid / genetics
  • Spinal Cord / chemistry

Substances

  • Iodine Radioisotopes
  • Opioid Peptides
  • RNA, Messenger
  • Receptors, Opioid
  • Nociceptin Receptor
  • Oprl protein, rat