Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 20, 2012

Pathologies of axonal transport in neurodegenerative diseases

  • Xin-An Liu EMAIL logo , Valerio Rizzo and Sathyanarayanan Puthanveettil

Abstract

Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein’s move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as “transportopathies”. Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases.

[1] Hirokawa N., Niwa S., Tanaka Y., Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease, Neuron, 2010, 68, 610–638 http://dx.doi.org/10.1016/j.neuron.2010.09.03910.1016/j.neuron.2010.09.039Search in Google Scholar

[2] Chao M. V., Retrograde transport redux, Neuron, 2003, 39, 1–2 http://dx.doi.org/10.1016/S0896-6273(03)00401-X10.1016/S0896-6273(03)00401-XSearch in Google Scholar

[3] Ikenaka K., Katsuno M., Kawai K., Ishigaki S., Tanaka F., Sobue G., Disruption of axonal transport in motor neuron diseases, Int. J. Mol. Sci., 2012, 13, 1225–1238 http://dx.doi.org/10.3390/ijms1301122510.3390/ijms13011225Search in Google Scholar

[4] Hollenbeck P. J., Saxton W. M., The axonal transport of mitochondria, J. Cell Sci., 2005, 118, 5411–5419 http://dx.doi.org/10.1242/jcs.0274510.1242/jcs.02745Search in Google Scholar

[5] Caviston J. P., Holzbaur E. L., Microtubule motors at the intersection of trafficking and transport, Trends Cell Biol., 2006, 16, 530–537 http://dx.doi.org/10.1016/j.tcb.2006.08.00210.1016/j.tcb.2006.08.002Search in Google Scholar

[6] Hirokawa N., Takemura R., Molecular motors and mechanisms of directional transport in neurons, Nat. Rev. Neurosci., 2005, 6, 201–214 http://dx.doi.org/10.1038/nrn162410.1038/nrn1624Search in Google Scholar

[7] Verhey K. J., Rapoport T. A., Kinesin carries the signal, Trends Biochem. Sci., 2001, 26, 545–550 http://dx.doi.org/10.1016/S0968-0004(01)01931-410.1016/S0968-0004(01)01931-4Search in Google Scholar

[8] Gunawardena S., Goldstein L. S., Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease, J. Neurobiol., 2004, 58, 258–271 http://dx.doi.org/10.1002/neu.1031910.1002/neu.10319Search in Google Scholar PubMed

[9] Kardon J. R., Vale R. D., Regulators of the cytoplasmic dynein motor, Nat. Rev. Mol. Cell. Biol., 2009, 10, 854–865 http://dx.doi.org/10.1038/nrm280410.1038/nrm2804Search in Google Scholar PubMed PubMed Central

[10] Kapitein L. C., Hoogenraad C. C., Which way to go? Cytoskeletal organization and polarized transport in neurons, Mol. Cell. Neurosci., 2011, 46, 9–20 http://dx.doi.org/10.1016/j.mcn.2010.08.01510.1016/j.mcn.2010.08.015Search in Google Scholar PubMed

[11] Conde C., Caceres A., Microtubule assembly, organization and dynamics in axons and dendrites, Nat. Rev. Neurosci., 2009, 10, 319–332 http://dx.doi.org/10.1038/nrn263110.1038/nrn2631Search in Google Scholar

[12] Signor D., Scholey J. M., Microtubule-based transport along axons, dendrites and axonemes, Essays Biochem., 2000, 35, 89–102 10.1042/bse0350089Search in Google Scholar

[13] Black M. M., Baas P. W., The basis of polarity in neurons, Trends Neurosci., 1989, 12, 211–214 http://dx.doi.org/10.1016/0166-2236(89)90124-010.1016/0166-2236(89)90124-0Search in Google Scholar

[14] Zheng Y., Wong M. L., Alberts B., Mitchison T., Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex, Nature, 1995, 378, 578–583 http://dx.doi.org/10.1038/378578a010.1038/378578a0Search in Google Scholar

[15] Schuyler S. C., Pellman D., Microtubule “plus-end-tracking proteins”: The end is just the beginning, Cell, 2001, 105, 421–424 http://dx.doi.org/10.1016/S0092-8674(01)00364-610.1016/S0092-8674(01)00364-6Search in Google Scholar

[16] Galjart N., Plus-end-tracking proteins and their interactions at microtubule ends, Curr. Biol., 2010, 20, R528–537 http://dx.doi.org/10.1016/j.cub.2010.05.02210.1016/j.cub.2010.05.022Search in Google Scholar

[17] Dehmelt L., Halpain S., The MAP2/Tau family of microtubuleassociated proteins, Genome Biol., 2005, 6, 204 http://dx.doi.org/10.1186/gb-2004-6-1-20410.1186/gb-2004-6-1-204Search in Google Scholar

[18] Halpain S., Dehmelt L., The MAP1 family of microtubule-associated proteins, Genome Biol., 2006, 7, 224 http://dx.doi.org/10.1186/gb-2006-7-6-22410.1186/gb-2006-7-6-224Search in Google Scholar

[19] Caceres A., Kosik K. S., Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, Nature, 1990, 343, 461–463 http://dx.doi.org/10.1038/343461a010.1038/343461a0Search in Google Scholar

[20] Caceres A., Mautino J., Kosik K. S., Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation, Neuron, 1992, 9, 607–618 http://dx.doi.org/10.1016/0896-6273(92)90025-910.1016/0896-6273(92)90025-9Search in Google Scholar

[21] Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al., Altered microtubule organization in small-calibre axons of mice lacking tau protein, Nature, 1994, 369, 488–491 http://dx.doi.org/10.1038/369488a010.1038/369488a0Search in Google Scholar

[22] Hirokawa N., Kinesin and dynein superfamily proteins and the mechanism of organelle transport, Science, 1998, 279, 519–526 http://dx.doi.org/10.1126/science.279.5350.51910.1126/science.279.5350.519Search in Google Scholar

[23] Brady S. T., A novel brain ATPase with properties expected for the fast axonal transport motor, Nature, 1985, 317, 73–75 http://dx.doi.org/10.1038/317073a010.1038/317073a0Search in Google Scholar

[24] Vale R. D., Reese T. S., Sheetz M. P., Identification of a novel forcegenerating protein, kinesin, involved in microtubule-based motility, Cell, 1985, 42, 39–50 http://dx.doi.org/10.1016/S0092-8674(85)80099-410.1016/S0092-8674(85)80099-4Search in Google Scholar

[25] Aizawa H., Sekine Y., Takemura R., Zhang Z., Nangaku M., Hirokawa N., Kinesin family in murine central nervous system, J. Cell Biol., 1992, 119, 1287–1296 http://dx.doi.org/10.1083/jcb.119.5.128710.1083/jcb.119.5.1287Search in Google Scholar

[26] Lawrence C. J., Dawe R. K., Christie K. R., Cleveland D. W., Dawson S. C., Endow S. A., et al., A standardized kinesin nomenclature, J. Cell Biol., 2004, 167, 19–22 http://dx.doi.org/10.1083/jcb.20040811310.1083/jcb.200408113Search in Google Scholar

[27] Brady S. T., Molecular motors in the nervous system, Neuron, 1991, 7, 521–533 http://dx.doi.org/10.1016/0896-6273(91)90365-710.1016/0896-6273(91)90365-7Search in Google Scholar

[28] Goldstein L. S., Yang Z., Microtubule-based transport systems in neurons: the roles of kinesins and dyneins, Annu. Rev. Neurosci., 2000, 23, 39–71 http://dx.doi.org/10.1146/annurev.neuro.23.1.3910.1146/annurev.neuro.23.1.39Search in Google Scholar

[29] Goldstein L. S., Molecular motors: from one motor many tails to one motor many tales, Trends Cell Biol., 2001, 11, 477–482 http://dx.doi.org/10.1016/S0962-8924(01)02143-210.1016/S0962-8924(01)02143-2Search in Google Scholar

[30] Goldstein L. S., Kinesin molecular motors: transport pathways, receptors, and human disease, Proc. Natl. Acad. Sci. USA, 2001, 98, 6999–7003 http://dx.doi.org/10.1073/pnas.11114529810.1073/pnas.111145298Search in Google Scholar PubMed PubMed Central

[31] Hirokawa N., mRNA transport in dendrites: RNA granules, motors, and tracks, J. Neurosci., 2006, 26, 7139–7142 http://dx.doi.org/10.1523/JNEUROSCI.1821-06.200610.1523/JNEUROSCI.1821-06.2006Search in Google Scholar

[32] Goldstein A. Y., Wang X., Schwarz T. L., Axonal transport and the delivery of pre-synaptic components, Curr. Opin. Neurobiol., 2008, 18, 495–503 http://dx.doi.org/10.1016/j.conb.2008.10.00310.1016/j.conb.2008.10.003Search in Google Scholar

[33] Puthanveettil S. V., Monje F. J., Miniaci M. C., Choi Y. B., Karl K. A., Khandros E., et al., A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex, Cell, 2008, 135, 960–973 http://dx.doi.org/10.1016/j.cell.2008.11.00310.1016/j.cell.2008.11.003Search in Google Scholar

[34] Gibbons I. R., Rowe A. J., Dynein: a protein with adenosine triphosphatase activity from cilia, Science, 1965, 149, 424–426 http://dx.doi.org/10.1126/science.149.3682.42410.1126/science.149.3682.424Search in Google Scholar

[35] Burns R. G., Pollard T. D., A dynein-like protein from brain, FEBS Lett., 1974, 40, 274–280 http://dx.doi.org/10.1016/0014-5793(74)80243-710.1016/0014-5793(74)80243-7Search in Google Scholar

[36] Vallee R. B., Shpetner H. S., Paschal B. M., The role of dynein in retrograde axonal transport, Trends Neurosci., 1989, 12, 66–70 http://dx.doi.org/10.1016/0166-2236(89)90138-010.1016/0166-2236(89)90138-0Search in Google Scholar

[37] Vale R. D., The molecular motor toolbox for intracellular transport, Cell, 2003, 112, 467–480 http://dx.doi.org/10.1016/S0092-8674(03)00111-910.1016/S0092-8674(03)00111-9Search in Google Scholar

[38] McGrath J. L., Dynein motility: four heads are better than two, Curr. Biol., 2005, 15, R970–972 http://dx.doi.org/10.1016/j.cub.2005.11.02110.1016/j.cub.2005.11.021Search in Google Scholar PubMed

[39] King S. J., Schroer T. A., Dynactin increases the processivity of the cytoplasmic dynein motor, Nat. Cell Biol., 2000, 2, 20–24 http://dx.doi.org/10.1038/7133810.1038/71338Search in Google Scholar PubMed

[40] Susalka S. J., Pfister K. K., Cytoplasmic dynein subunit heterogeneity: implications for axonal transport, J. Neurocytol., 2000, 29, 819–829 http://dx.doi.org/10.1023/A:101099540834310.1023/A:1010995408343Search in Google Scholar

[41] Vallee R. B., Williams J. C., Varma D., Barnhart L. E., Dynein: An ancient motor protein involved in multiple modes of transport, J. Neurobiol., 2004, 58, 189–200 http://dx.doi.org/10.1002/neu.1031410.1002/neu.10314Search in Google Scholar

[42] Fifkova E., Delay R. J., Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity, J. Cell Biol., 1982, 95, 345–350 http://dx.doi.org/10.1083/jcb.95.1.34510.1083/jcb.95.1.345Search in Google Scholar

[43] Luo L., Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity, Annu. Rev. Cell. Dev. Biol., 2002, 18, 601–635 http://dx.doi.org/10.1146/annurev.cellbio.18.031802.15050110.1146/annurev.cellbio.18.031802.150501Search in Google Scholar

[44] Hotulainen P., Hoogenraad C. C., Actin in dendritic spines: connecting dynamics to function, J. Cell Biol., 2010, 189, 619–629 http://dx.doi.org/10.1083/jcb.20100300810.1083/jcb.201003008Search in Google Scholar

[45] dos Remedios C. G., Chhabra D., Kekic M., Dedova I. V., Tsubakihara M., Berry D. A., et al., Actin binding proteins: regulation of cytoskeletal microfilaments, Physiol. Rev., 2003, 83, 433–473 10.1152/physrev.00026.2002Search in Google Scholar

[46] Puszkin S., Berl S., Puszkin E., Clarke D. D., Actomyosin-like protein isolated from mammalian brain, Science, 1968, 161, 170–171 http://dx.doi.org/10.1126/science.161.3837.17010.1126/science.161.3837.170Search in Google Scholar

[47] Puszkin S., Nicklas W. J., Berl S., Actomyosin-like protein in brain: subcellular distribution, J. Neurochem., 1972, 19, 1319–1333 http://dx.doi.org/10.1111/j.1471-4159.1972.tb01457.x10.1111/j.1471-4159.1972.tb01457.xSearch in Google Scholar

[48] Bridgman P. C., Myosin-dependent transport in neurons, J. Neurobiol., 2004, 58, 164–174 http://dx.doi.org/10.1002/neu.1032010.1002/neu.10320Search in Google Scholar

[49] Bridgman P.C., Elkin L. L., Axonal myosins, J. Neurocytol., 2000, 29, 831–841 http://dx.doi.org/10.1023/A:101094752518110.1023/A:1010947525181Search in Google Scholar

[50] Sellers J. R., Myosins: a diverse superfamily, Biochim. Biophys. Acta, 2000, 1496, 3–22 http://dx.doi.org/10.1016/S0167-4889(00)00005-710.1016/S0167-4889(00)00005-7Search in Google Scholar

[51] Titus M. A., Myosins, Curr. Opin. Cell Biol., 1993, 5, 77–81 http://dx.doi.org/10.1016/S0955-0674(05)80011-010.1016/S0955-0674(05)80011-0Search in Google Scholar

[52] Foth B. J., Goedecke M. C., Soldati D., New insights into myosin evolution and classification, Proc. Natl. Acad. Sci. USA, 2006, 103, 3681–3686 http://dx.doi.org/10.1073/pnas.050630710310.1073/pnas.0506307103Search in Google Scholar

[53] Dunn B. D., Sakamoto T., Hong M. S., Sellers J. R., Takizawa P. A., Myo4p is a monomeric myosin with motility uniquely adapted to transport mRNA, J. Cell Biol., 2007, 178, 1193–1206 http://dx.doi.org/10.1083/jcb.20070708010.1083/jcb.200707080Search in Google Scholar

[54] Harrington W. F., Burke M., Geometry of the myosin dimer in highsalt media. I. Association behavior of rod segments from myosin, Biochemistry, 1972, 11, 1448–1455 http://dx.doi.org/10.1021/bi00758a01910.1021/bi00758a019Search in Google Scholar

[55] Saitoh T., Takemura S., Ueda K., Hosoya H., Nagayama M., Haga H., et al., Differential localization of non-muscle myosin II isoforms and phosphorylated regulatory light chains in human MRC-5 fibroblasts, FEBS Lett., 2001, 509, 365–369 http://dx.doi.org/10.1016/S0014-5793(01)03186-610.1016/S0014-5793(01)03186-6Search in Google Scholar

[56] Vibert P., Cohen C., Domains, motions and regulation in the myosin head, J. Muscle Res. Cell. Motil., 1988, 9, 296–305 http://dx.doi.org/10.1007/BF0177387310.1007/BF01773873Search in Google Scholar PubMed

[57] Krendel M., Mooseker M.S., Myosins: tails (and heads) of functional diversity, Physiology (Bethesda), 2005, 20, 239–251 http://dx.doi.org/10.1152/physiol.00014.200510.1152/physiol.00014.2005Search in Google Scholar PubMed

[58] Syamaladevi D. P., Spudich J. A., Sowdhamini R., Structural and functional insights on the Myosin superfamily, Bioinform. Biol. Insights, 2012, 6, 11–21 10.4137/BBI.S8451Search in Google Scholar PubMed PubMed Central

[59] Wang Z., Edwards J. G., Riley N., Provance D. W. Jr., Karcher R., Li X. D., et al., Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity, Cell, 2008, 135, 535–548 http://dx.doi.org/10.1016/j.cell.2008.09.05710.1016/j.cell.2008.09.057Search in Google Scholar PubMed PubMed Central

[60] Wagner W., Brenowitz S. D., Hammer J. A. 3rd, Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons, Nat. Cell Biol., 2011, 13, 40–48 http://dx.doi.org/10.1038/ncb213210.1038/ncb2132Search in Google Scholar PubMed PubMed Central

[61] Phichith D., Travaglia M., Yang Z., Liu X., Zong A. B., Safer D., et al., Cargo binding induces dimerization of myosin VI, Proc. Natl. Acad. Sci. USA, 2009, 106, 17320–17324 http://dx.doi.org/10.1073/pnas.090974810610.1073/pnas.0909748106Search in Google Scholar PubMed PubMed Central

[62] Seabrooke S., Qiu X., Stewart B. A., Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction, BMC Neurosci., 2010, 11, 37 http://dx.doi.org/10.1186/1471-2202-11-3710.1186/1471-2202-11-37Search in Google Scholar PubMed PubMed Central

[63] Gavin C. F., Rubio M. D., Young E., Miller C., Rumbaugh G., Myosin II motor activity in the lateral amygdala is required for fear memory consolidation, Learn. Mem., 2011, 19, 9–14 http://dx.doi.org/10.1101/lm.024042.11110.1101/lm.024042.111Search in Google Scholar PubMed PubMed Central

[64] Rex C. S., Gavin C. F., Rubio M. D., Kramar E. A., Chen L. Y., Jia Y., et al., Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation, Neuron, 2010, 67, 603–617 http://dx.doi.org/10.1016/j.neuron.2010.07.01610.1016/j.neuron.2010.07.016Search in Google Scholar PubMed PubMed Central

[65] Hu X., Viesselmann C., Nam S., Merriam E., Dent E. W., Activitydependent dynamic microtubule invasion of dendritic spines, J. Neurosci., 2008, 28, 13094–13105 http://dx.doi.org/10.1523/JNEUROSCI.3074-08.200810.1523/JNEUROSCI.3074-08.2008Search in Google Scholar PubMed PubMed Central

[66] Maas C., Belgardt D., Lee H. K., Heisler F. F., Lappe-Siefke C., Magiera M. M., et al., Synaptic activation modifies microtubules underlying transport of postsynaptic cargo, Proc. Natl. Acad. Sci. USA, 2009, 106, 8731–8736 http://dx.doi.org/10.1073/pnas.081239110610.1073/pnas.0812391106Search in Google Scholar PubMed PubMed Central

[67] Hoogenraad C. C., Bradke F., Control of neuronal polarity and plasticity—a renaissance for microtubules?, Trends Cell Biol., 2009, 19, 669–676 http://dx.doi.org/10.1016/j.tcb.2009.08.00610.1016/j.tcb.2009.08.006Search in Google Scholar PubMed

[68] Holzbaur E. L., Scherer S. S., Microtubules, axonal transport, and neuropathy, N. Engl. J. Med., 2011, 365, 2330–2332 http://dx.doi.org/10.1056/NEJMcibr111248110.1056/NEJMcibr1112481Search in Google Scholar PubMed PubMed Central

[69] Cambray-Deakin M. A., Burgoyne R. D., Posttranslational modifications of alpha-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum, J. Cell Biol., 1987, 104, 1569–1574 http://dx.doi.org/10.1083/jcb.104.6.156910.1083/jcb.104.6.1569Search in Google Scholar PubMed PubMed Central

[70] Audebert S., Koulakoff A., Berwald-Netter Y., Gros F., Denoulet P., Edde B., Developmental regulation of polyglutamylated alpha- and betatubulin in mouse brain neurons, J. Cell Sci., 1994, 107, 2313–2322 10.1242/jcs.107.8.2313Search in Google Scholar PubMed

[71] Mansfield S. G., Gordon-Weeks P. R., Dynamic post-translational modification of tubulin in rat cerebral cortical neurons extending neurites in culture: effects of taxol, J. Neurocytol., 1991, 20, 654–666 http://dx.doi.org/10.1007/BF0118706710.1007/BF01187067Search in Google Scholar

[72] Billingsley M. L., Kincaid R. L., Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration, Biochem. J., 1997, 323, 577–591 10.1042/bj3230577Search in Google Scholar

[73] Perdiz D., Mackeh R., Pous C., Baillet A., The ins and outs of tubulin acetylation: more than just a post-translational modification?, Cell. Signal., 2011, 23, 763–771 http://dx.doi.org/10.1016/j.cellsig.2010.10.01410.1016/j.cellsig.2010.10.014Search in Google Scholar

[74] Janke C., Kneussel M., Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton, Trends Neurosci., 2010, 33, 362–372 http://dx.doi.org/10.1016/j.tins.2010.05.00110.1016/j.tins.2010.05.001Search in Google Scholar

[75] Fukushima N., Furuta D., Hidaka Y., Moriyama R., Tsujiuchi T., Posttranslational modifications of tubulin in the nervous system, J. Neurochem., 2009, 109, 683–693 http://dx.doi.org/10.1111/j.1471-4159.2009.06013.x10.1111/j.1471-4159.2009.06013.xSearch in Google Scholar

[76] Reed N. A., Cai D., Blasius T. L., Jih G. T., Meyhofer E., Gaertig J., et al., Microtubule acetylation promotes kinesin-1 binding and transport, Curr. Biol., 2006, 16, 2166–2172 http://dx.doi.org/10.1016/j.cub.2006.09.01410.1016/j.cub.2006.09.014Search in Google Scholar

[77] Westermann S., Weber K., Post-translational modifications regulate microtubule function, Nat. Rev. Mol. Cell Biol., 2003, 4, 938–947 http://dx.doi.org/10.1038/nrm126010.1038/nrm1260Search in Google Scholar

[78] Konishi Y., Setou M., Tubulin tyrosination navigates the kinesin-1 motor domain to axons, Nat. Neurosci., 2009, 12, 559–567 http://dx.doi.org/10.1038/nn.231410.1038/nn.2314Search in Google Scholar

[79] Bettencourt da Cruz A., Schwarzel M., Schulze S., Niyyati M., Heisenberg M., Kretzschmar D., Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila, Mol. Biol. Cell, 2005, 16, 2433–2442 http://dx.doi.org/10.1091/mbc.E04-11-100410.1091/mbc.e04-11-1004Search in Google Scholar

[80] Fischer M., Kaech S., Knutti D., Matus A., Rapid actin-based plasticity in dendritic spines, Neuron, 1998, 20, 847–854 http://dx.doi.org/10.1016/S0896-6273(00)80467-510.1016/S0896-6273(00)80467-5Search in Google Scholar

[81] Matsuzaki M., Honkura N., Ellis-Davies G. C., Kasai H., Structural basis of long-term potentiation in single dendritic spines, Nature, 2004, 429, 761–766 http://dx.doi.org/10.1038/nature0261710.1038/nature02617Search in Google Scholar

[82] Luo L., Hensch T. K., Ackerman L., Barbel S., Jan L. Y., Jan Y. N., Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines, Nature, 1996, 379, 837–840 http://dx.doi.org/10.1038/379837a010.1038/379837a0Search in Google Scholar

[83] McIlvain J. M. Jr., Burkhardt J. K., Hamm-Alvarez S., Argon Y., Sheetz M. P., Regulation of kinesin activity by phosphorylation of kinesinassociated proteins, J. Biol. Chem., 1994, 269, 19176–19182 10.1016/S0021-9258(17)32291-3Search in Google Scholar

[84] Lindesmith L., McIlvain J. M. Jr., Argon Y., Sheetz M. P., Phosphotransferases associated with the regulation of kinesin motor activity, J. Biol. Chem., 1997, 272, 22929–22933 http://dx.doi.org/10.1074/jbc.272.36.2292910.1074/jbc.272.36.22929Search in Google Scholar PubMed

[85] Sheetz M. P., Motor and cargo interactions, Eur. J. Biochem., 1999, 262, 19–25 http://dx.doi.org/10.1046/j.1432-1327.1999.00340.x10.1046/j.1432-1327.1999.00340.xSearch in Google Scholar PubMed

[86] Morfini G., Pigino G., Szebenyi G., You Y., Pollema S., Brady S. T., JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport, Nat. Neurosci., 2006, 9, 907–916 http://dx.doi.org/10.1038/nn171710.1038/nn1717Search in Google Scholar PubMed

[87] Stagi M., Gorlovoy P., Larionov S., Takahashi K., Neumann H., Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway, FASEB J., 2006, 20, 2573–2575 http://dx.doi.org/10.1096/fj.06-6679fje10.1096/fj.06-6679fjeSearch in Google Scholar PubMed

[88] Koushika S. P., “JIP”ing along the axon: the complex roles of JIPs in axonal transport, Bioessays, 2008, 30, 10–14 http://dx.doi.org/10.1002/bies.2069510.1002/bies.20695Search in Google Scholar PubMed

[89] Blasius T. L., Cai D., Jih G. T., Toret C. P., Verhey K. J., Two binding partners cooperate to activate the molecular motor Kinesin-1, J. Cell Biol., 2007, 176, 11–17 http://dx.doi.org/10.1083/jcb.20060509910.1083/jcb.200605099Search in Google Scholar PubMed PubMed Central

[90] Horiuchi D., Collins C. A., Bhat P., Barkus R. V., Diantonio A., Saxton W. M., Control of a kinesin-cargo linkage mechanism by JNK pathway kinases, Curr. Biol., 2007, 17, 1313–1317 http://dx.doi.org/10.1016/j.cub.2007.06.06210.1016/j.cub.2007.06.062Search in Google Scholar PubMed PubMed Central

[91] Chang L., Jones Y., Ellisman M. H., Goldstein L. S., Karin M., JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins, Dev. Cell, 2003, 4, 521–533 http://dx.doi.org/10.1016/S1534-5807(03)00094-710.1016/S1534-5807(03)00094-7Search in Google Scholar

[92] Reynolds C. H., Utton M. A., Gibb G. M., Yates A., Anderton B. H., Stress-activated protein kinase/c-jun N-terminal kinase phosphorylates tau protein, J. Neurochem., 1997, 68, 1736–1744 http://dx.doi.org/10.1046/j.1471-4159.1997.68041736.x10.1046/j.1471-4159.1997.68041736.xSearch in Google Scholar

[93] Tararuk T., Ostman N., Li W., Bjorkblom B., Padzik A., Zdrojewska J., et al., JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length, J. Cell Biol., 2006, 173, 265–277 http://dx.doi.org/10.1083/jcb.20051105510.1083/jcb.200511055Search in Google Scholar

[94] Colin E., Zala D., Liot G., Rangone H., Borrell-Pages M., Li X. J., et al., Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons, EMBO J., 2008, 27, 2124–2134 http://dx.doi.org/10.1038/emboj.2008.13310.1038/emboj.2008.133Search in Google Scholar

[95] Schaefer A. W., Schoonderwoert V. T., Ji L., Mederios N., Danuser G., Forscher P., Coordination of actin filament and microtubule dynamics during neurite outgrowth, Dev. Cell, 2008, 15, 146–162 http://dx.doi.org/10.1016/j.devcel.2008.05.00310.1016/j.devcel.2008.05.003Search in Google Scholar

[96] Burnette D. T., Ji L., Schaefer A. W., Medeiros N. A., Danuser G., Forscher P., Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck, Dev. Cell, 2008, pp15, 163–169 http://dx.doi.org/10.1016/j.devcel.2008.05.01610.1016/j.devcel.2008.05.016Search in Google Scholar

[97] Arimura N., Kaibuchi K., Neuronal polarity: from extracellular signals to intracellular mechanisms, Nat. Rev. Neurosci., 2007, 8, 194–205 http://dx.doi.org/10.1038/nrn205610.1038/nrn2056Search in Google Scholar

[98] Dent E. W., Gertler F. B., Cytoskeletal dynamics and transport in growth cone motility and axon guidance, Neuron, 2003, 40, 209–227 http://dx.doi.org/10.1016/S0896-6273(03)00633-010.1016/S0896-6273(03)00633-0Search in Google Scholar

[99] Mufson E. J., Kroin J. S., Sendera T. J., Sobreviela T., Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases, Prog. Neurobiol., 1999, 57, 451–484 http://dx.doi.org/10.1016/S0301-0082(98)00059-810.1016/S0301-0082(98)00059-8Search in Google Scholar

[100] Hirokawa N., Noda Y., Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics, Physiol. Rev., 2008, 88, 1089–1118 http://dx.doi.org/10.1152/physrev.00023.200710.1152/physrev.00023.2007Search in Google Scholar PubMed

[101] Kandel E. R., The molecular biology of memory storage: a dialogue between genes and synapses, Science, 2001, 294, 1030–1038 http://dx.doi.org/10.1126/science.106702010.1126/science.1067020Search in Google Scholar

[102] Kiebler M. A., DesGroseillers L., Molecular insights into mRNA transport and local translation in the mammalian nervous system, Neuron, 2000, 25, 19–28 http://dx.doi.org/10.1016/S0896-6273(00)80868-510.1016/S0896-6273(00)80868-5Search in Google Scholar

[103] Martin K. C., Casadio A., Zhu H., Yaping E., Rose J. C., Chen M., et al., Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage, Cell, 1997, 91, 927–938 http://dx.doi.org/10.1016/S0092-8674(00)80484-510.1016/S0092-8674(00)80484-5Search in Google Scholar

[104] Si K., Giustetto M., Etkin A., Hsu R., Janisiewicz A. M., Miniaci M. C., et al., A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia, Cell, 2003, 115, 893–904 http://dx.doi.org/10.1016/S0092-8674(03)01021-310.1016/S0092-8674(03)01021-3Search in Google Scholar

[105] Martin K. C., Ephrussi A., mRNA localization: gene expression in the spatial dimension, Cell, 2009, 136, 719–730 http://dx.doi.org/10.1016/j.cell.2009.01.04410.1016/j.cell.2009.01.044Search in Google Scholar PubMed PubMed Central

[106] Tubing F., Vendra G., Mikl M., Macchi P., Thomas S., Kiebler M. A., Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons, J. Neurosci., 2010, 30, 4160–4170 http://dx.doi.org/10.1523/JNEUROSCI.3537-09.201010.1523/JNEUROSCI.3537-09.2010Search in Google Scholar PubMed PubMed Central

[107] Lyles V., Zhao Y., Martin K. C., Synapse formation and mRNA localization in cultured Aplysia neurons, Neuron, 2006, 49, 349–356 http://dx.doi.org/10.1016/j.neuron.2005.12.02910.1016/j.neuron.2005.12.029Search in Google Scholar PubMed

[108] Raymond C. R., Thompson V. L., Tate W. P., Abraham W. C., Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation, J. Neurosci., 2000, 20, 969–976 10.1523/JNEUROSCI.20-03-00969.2000Search in Google Scholar

[109] Miki H., Okada Y., Hirokawa N., Analysis of the kinesin superfamily: insights into structure and function, Trends Cell Biol., 2005, 15, 467–476 http://dx.doi.org/10.1016/j.tcb.2005.07.00610.1016/j.tcb.2005.07.006Search in Google Scholar PubMed

[110] Kanai Y., Dohmae N., Hirokawa N., Kinesin transports RNA: isolation and characterization of an RNA-transporting granule, Neuron, 2004, 43, 513–525 http://dx.doi.org/10.1016/j.neuron.2004.07.02210.1016/j.neuron.2004.07.022Search in Google Scholar PubMed

[111] De Vos K. J., Grierson A. J., Ackerley S., Miller C. C., Role of axonal transport in neurodegenerative diseases, Annu. Rev. Neurosci., 2008, 31, 151–173 http://dx.doi.org/10.1146/annurev.neuro.31.061307.09071110.1146/annurev.neuro.31.061307.090711Search in Google Scholar PubMed

[112] Pack-Chung E., Kurshan P. T., Dickman D. K., Schwarz T. L., A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport, Nat. Neurosci., 2007, 10, 980–989 http://dx.doi.org/10.1038/nn193610.1038/nn1936Search in Google Scholar PubMed

[113] Horiuchi D., Barkus R. V., Pilling A. D., Gassman A., Saxton W. M., APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila, Curr. Biol., 2005, 15, 2137–2141 http://dx.doi.org/10.1016/j.cub.2005.10.04710.1016/j.cub.2005.10.047Search in Google Scholar PubMed PubMed Central

[114] Miller K. E., DeProto J., Kaufmann N., Patel B. N., Duckworth A., Van Vactor D., Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles, Curr. Biol., 2005, 15, 684–689 http://dx.doi.org/10.1016/j.cub.2005.02.06110.1016/j.cub.2005.02.061Search in Google Scholar PubMed

[115] Gindhart J. G., Chen J., Faulkner M., Gandhi R., Doerner K., Wisniewski T., et al., The kinesin-associated protein UNC-76 is required for axonal transport in the Drosophila nervous system, Mol. Biol. Cell, 2003, 14, 3356–3365 http://dx.doi.org/10.1091/mbc.E02-12-080010.1091/mbc.e02-12-0800Search in Google Scholar PubMed PubMed Central

[116] Glater E. E., Megeath L. J., Stowers R. S., Schwarz T. L., Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent, J. Cell Biol., 2006, 173, 545–557 http://dx.doi.org/10.1083/jcb.20060106710.1083/jcb.200601067Search in Google Scholar PubMed PubMed Central

[117] Hafezparast M., Klocke R., Ruhrberg C., Marquardt A., Ahmad-Annuar A., Bowen S., et al., Mutations in dynein link motor neuron degeneration to defects in retrograde transport, Science, 2003, 300, 808–812 http://dx.doi.org/10.1126/science.108312910.1126/science.1083129Search in Google Scholar PubMed

[118] Ori-McKenney K. M., Xu J., Gross S. P., Vallee R. B., A cytoplasmic dynein tail mutation impairs motor processivity, Nat. Cell Biol., 2010, 12, 1228–1234 http://dx.doi.org/10.1038/ncb212710.1038/ncb2127Search in Google Scholar PubMed PubMed Central

[119] Courchesne S. L., Pazyra-Murphy M. F., Lee D. J., Segal R. A., Neuromuscular junction defects in mice with mutation of dynein heavy chain 1, PLoS One, 2011, 6, e16753 http://dx.doi.org/10.1371/journal.pone.001675310.1371/journal.pone.0016753Search in Google Scholar PubMed PubMed Central

[120] Ilieva H. S. Yamanaka K., Malkmus S., Kakinohana O., Yaksh T., Marsala M., et al., Mutant dynein (Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest motor neuron death, Proc. Natl. Acad. Sci. USA, 2008, 105, 12599–12604 http://dx.doi.org/10.1073/pnas.080542210510.1073/pnas.0805422105Search in Google Scholar PubMed PubMed Central

[121] Braunstein K. E., Eschbach J., Rona-Voros K., Soylu R., Mikrouli E., Larmet Y., et al., A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons, Hum. Mol. Genet., 2010, 19, 4385–4398 http://dx.doi.org/10.1093/hmg/ddq36110.1093/hmg/ddq361Search in Google Scholar

[122] Jiang Y. M., Yamamoto M., Kobayashi Y., Yoshihara T., Liang Y., Terao S., et al., Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis, Ann. Neurol., 2005, 57, 236–251 http://dx.doi.org/10.1002/ana.2037910.1002/ana.20379Search in Google Scholar

[123] Riviere J. B., Ramalingam S., Lavastre V., Shekarabi M., Holbert S., Lafontaine J., et al., KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2, Am. J. Hum. Genet., 2011, 89, 219–230 http://dx.doi.org/10.1016/j.ajhg.2011.06.01310.1016/j.ajhg.2011.06.013Search in Google Scholar

[124] Erlich Y., Edvardson S., Hodges E., Zenvirt S., Thekkat P., Shaag A., et al., Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis, Genome Res., 2011, 21, 658–664 http://dx.doi.org/10.1101/gr.117143.11010.1101/gr.117143.110Search in Google Scholar

[125] Blair M. A., Ma S., Hedera P., Mutation in KIF5A can also cause adultonset hereditary spastic paraplegia, Neurogenetics, 2006, 7, 47–50 http://dx.doi.org/10.1007/s10048-005-0027-810.1007/s10048-005-0027-8Search in Google Scholar

[126] Dafinger C., Liebau M. C., Elsayed S. M., Hellenbroich Y., Boltshauser E., Korenke G. C., et al., Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics, J. Clin. Invest., 2011, 121, 2662–2667 http://dx.doi.org/10.1172/JCI4363910.1172/JCI43639Search in Google Scholar

[127] Tarabeux J., Champagne N., Brustein E., Hamdan F. F., Gauthier J., Lapointe M., et al., De novo truncating mutation in Kinesin 17 associated with schizophrenia, Biol. Psychiatry, 2010, 68, 649–656 http://dx.doi.org/10.1016/j.biopsych.2010.04.01810.1016/j.biopsych.2010.04.018Search in Google Scholar

[128] Lu S., Zhao C., Zhao K., Li N., Larsson C., Novel and recurrent KIF21A mutations in congenital fibrosis of the extraocular muscles type 1 and 3, Arch. Ophthalmol., 2008, 126, 388–394 http://dx.doi.org/10.1001/archopht.126.3.38810.1001/archopht.126.3.388Search in Google Scholar

[129] Khan A. O., Khalil D. S., Al Sharif L. J., Al-Ghadhfan F. E., Al Tassan N. A., Germline mosaicism for KIF21A mutation (p.R954L) mimicking recessive inheritance for congenital fibrosis of the extraocular muscles, Ophthalmology, 2010, 117, 154–158 http://dx.doi.org/10.1016/j.ophtha.2009.06.02910.1016/j.ophtha.2009.06.029Search in Google Scholar

[130] Zhao C., Takita J., Tanaka Y., Setou M., Nakagawa T., Takeda S., et al., Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta, Cell, 2001, 105, 587–597 http://dx.doi.org/10.1016/S0092-8674(01)00363-410.1016/S0092-8674(01)00363-4Search in Google Scholar

[131] Sharma R., Buras E., Terashima T., Serrano F., Massaad C. A., Hu L., et al., Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice, PLoS One, 2010, 5, e13463 http://dx.doi.org/10.1371/journal.pone.001346310.1371/journal.pone.0013463Search in Google Scholar

[132] Haider L., Fischer M. T., Frischer J. M., Bauer J., Hoftberger R., Botond G., et al., Oxidative damage in multiple sclerosis lesions, Brain, 2011, 134, 1914–1924 http://dx.doi.org/10.1093/brain/awr12810.1093/brain/awr128Search in Google Scholar

[133] Wilkinson A. E., Bridges L. R., Sivaloganathan S., Correlation of survival time with size of axonal swellings in diffuse axonal injury, Acta Neuropathol., 1999, 98, 197–202 http://dx.doi.org/10.1007/s00401005106910.1007/s004010051069Search in Google Scholar

[134] Roediger B., Armati P. J., Oxidative stress induces axonal beading in cultured human brain tissue, Neurobiol. Dis., 2003, 13, 222–229 http://dx.doi.org/10.1016/S0969-9961(03)00038-X10.1016/S0969-9961(03)00038-XSearch in Google Scholar

[135] Stamer K., Vogel R., Thies E., Mandelkow E., Mandelkow E. M., Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J. Cell Biol., 2002, 156, 1051–1063 http://dx.doi.org/10.1083/jcb.20010805710.1083/jcb.200108057Search in Google Scholar PubMed PubMed Central

[136] Hirai K., Aliev G., Nunomura A., Fujioka H., Russell R. L., Atwood C. S., et al., Mitochondrial abnormalities in Alzheimer’s disease, J. Neurosci., 2001, 21, 3017–3023 10.1523/JNEUROSCI.21-09-03017.2001Search in Google Scholar

[137] Massaad C. A., Amin S. K., Hu L., Mei Y., Klann E., Pautler R. G., Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimer’s disease, PLoS One, 2010, 5, e10561 http://dx.doi.org/10.1371/journal.pone.001056110.1371/journal.pone.0010561Search in Google Scholar PubMed PubMed Central

[138] Shidara Y., Hollenbeck P. J., Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia, J. Neurosci., 2010, 30, 11369–11378 http://dx.doi.org/10.1523/JNEUROSCI.0529-10.201010.1523/JNEUROSCI.0529-10.2010Search in Google Scholar PubMed PubMed Central

[139] Green D. R., Reed J. C., Mitochondria and apoptosis, Science, 1998, 281, 1309–1312 http://dx.doi.org/10.1126/science.281.5381.130910.1126/science.281.5381.1309Search in Google Scholar PubMed

[140] Magrané J, Manfredi G., Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis, Antioxid. Redox Signal., 2009, 11, 1615–1626 http://dx.doi.org/10.1089/ars.2009.260410.1089/ars.2009.2604Search in Google Scholar PubMed PubMed Central

[141] Sasaki S., Iwata M., Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis, Neurology, 1996, 47, 535–540 http://dx.doi.org/10.1212/WNL.47.2.53510.1212/WNL.47.2.535Search in Google Scholar PubMed

[142] Sasaki S., Iwata M., Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol., 2007, 66, 10–16 http://dx.doi.org/10.1097/nen.0b013e31802c396b10.1097/nen.0b013e31802c396bSearch in Google Scholar PubMed

[143] Yue Z., Wang Q. J., Komatsu M., Neuronal autophagy: going the distance to the axon, Autophagy, 2008, 4, 94–96 10.4161/auto.5202Search in Google Scholar PubMed PubMed Central

[144] Katsumata K., Nishiyama J., Inoue T., Mizushima N., Takeda J., Yuzaki M., Dynein- and activity-dependent retrograde transport of autophagosomes in neuronal axons, Autophagy, 2010, 6, 378–385 http://dx.doi.org/10.4161/auto.6.3.1126210.4161/auto.6.3.11262Search in Google Scholar PubMed

[145] Harris H., Rubinsztein D. C., Control of autophagy as a therapy for neurodegenerative disease, Nat. Rev. Neurol., 2012, 8, 108–117 http://dx.doi.org/10.1038/nrneurol.2011.20010.1038/nrneurol.2011.200Search in Google Scholar PubMed

[146] Nixon R. A., Autophagy in neurodegenerative disease: friend, foe or turncoat?, Trends Neurosci., 2006, 29, 528–535 http://dx.doi.org/10.1016/j.tins.2006.07.00310.1016/j.tins.2006.07.003Search in Google Scholar PubMed

[147] Yu W. H., Cuervo A. M., Kumar A., Peterhoff C. M., Schmidt S. D., Lee J. H., et al., Macroautophagy — a novel beta-amyloid peptidegenerating pathway activated in Alzheimer’s disease, J. Cell Biol., 2005, 171, 87–98 http://dx.doi.org/10.1083/jcb.20050508210.1083/jcb.200505082Search in Google Scholar PubMed PubMed Central

[148] Nixon R. A., Autophagy, amyloidogenesis and Alzheimer disease, J. Cell Sci., 2007, 120, 4081–4091 http://dx.doi.org/10.1242/jcs.01926510.1242/jcs.019265Search in Google Scholar PubMed

[149] Chu C. T., Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism, Biochim. Biophys. Acta, 2010, 1802, 20–28 http://dx.doi.org/10.1016/j.bbadis.2009.06.01210.1016/j.bbadis.2009.06.012Search in Google Scholar PubMed PubMed Central

[150] Sapp E., Schwarz C., Chase K., Bhide P. G., Young A. B., Penney J., et al., Huntingtin localization in brains of normal and Huntington’s disease patients, Ann. Neurol., 1997, 42, 604–612 http://dx.doi.org/10.1002/ana.41042041110.1002/ana.410420411Search in Google Scholar PubMed

[151] Martinez-Vicente M., Talloczy Z., Wong E., Tang G., Koga H., Kaushik S., et al., Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease, Nat. Neurosci., 2010, 13, 567–576 http://dx.doi.org/10.1038/nn.252810.1038/nn.2528Search in Google Scholar PubMed PubMed Central

[152] Sasaki S., Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol., 2011, 70, 349–359 http://dx.doi.org/10.1097/NEN.0b013e318216069010.1097/NEN.0b013e3182160690Search in Google Scholar PubMed

[153] Ravikumar B., Acevedo-Arozena A., Imarisio S., Berger Z., Vacher C., O’Kane C.J., et al., Dynein mutations impair autophagic clearance of aggregate-prone proteins, Nat. Genet., 2005, 37, 771–776 http://dx.doi.org/10.1038/ng159110.1038/ng1591Search in Google Scholar PubMed

[154] Laird F. M., Farah M. H., Ackerley S., Hoke A., Maragakis N., Rothstein J. D., et al., Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking, J. Neurosci., 2008, 28, 1997–2005 http://dx.doi.org/10.1523/JNEUROSCI.4231-07.200810.1523/JNEUROSCI.4231-07.2008Search in Google Scholar PubMed PubMed Central

[155] Mattson M. P., Pathways towards and away from Alzheimer’s disease, Nature, 2004, 430, 631–639 http://dx.doi.org/10.1038/nature0262110.1038/nature02621Search in Google Scholar PubMed PubMed Central

[156] Lee V.M., Goedert M., Trojanowski J. Q., Neurodegenerative tauopathies, Annu. Rev. Neurosci., 2001, 24, 1121–1159 http://dx.doi.org/10.1146/annurev.neuro.24.1.112110.1146/annurev.neuro.24.1.1121Search in Google Scholar PubMed

[157] Morris M., Maeda S., Vossel K., Mucke L., The many faces of tau, Neuron, 2011, 70, 410–426 http://dx.doi.org/10.1016/j.neuron.2011.04.00910.1016/j.neuron.2011.04.009Search in Google Scholar PubMed PubMed Central

[158] Wang J. Z., Liu F., Microtubule-associated protein tau in development, degeneration and protection of neurons, Prog. Neurobiol., 2008, 85, 148–175 http://dx.doi.org/10.1016/j.pneurobio.2008.03.00210.1016/j.pneurobio.2008.03.002Search in Google Scholar PubMed

[159] Hardy J., Selkoe D. J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 2002, 297, 353–356 http://dx.doi.org/10.1126/science.107299410.1126/science.1072994Search in Google Scholar PubMed

[160] Vossel K. A., Zhang K., Brodbeck J., Daub A. C., Sharma P., Finkbeiner S., et al., Tau reduction prevents amyloid beta-induced defects in axonal transport, Science, 2010, 330, 198 http://dx.doi.org/10.1126/science.119465310.1126/science.1194653Search in Google Scholar PubMed PubMed Central

[161] Ittner L. M., Gotz J., Amyloid-beta and tau — a toxic pas de deux in Alzheimer’s disease, Nat. Rev. Neurosci., 2011, 12, 65–72 http://dx.doi.org/10.1038/nrn296710.1038/nrn2967Search in Google Scholar

[162] Reddy P. H., Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease, Brain. Res., 2011, 1415, 136–148 http://dx.doi.org/10.1016/j.brainres.2011.07.05210.1016/j.brainres.2011.07.052Search in Google Scholar

[163] Spillantini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., Ghetti B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, Proc. Natl. Acad. Sci. USA, 1998, 95, 7737–7741 http://dx.doi.org/10.1073/pnas.95.13.773710.1073/pnas.95.13.7737Search in Google Scholar

[164] Cash A. D., Aliev G., Siedlak S. L., Nunomura A., Fujioka H., Zhu X., et al., Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation, Am. J. Pathol., 2003, 162, 1623–1627 http://dx.doi.org/10.1016/S0002-9440(10)64296-410.1016/S0002-9440(10)64296-4Search in Google Scholar

[165] Khatoon S., Grundke-Iqbal I., Iqbal K., Brain levels of microtubuleassociated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein, J. Neurochem., 1992, 59, 750–753 http://dx.doi.org/10.1111/j.1471-4159.1992.tb09432.x10.1111/j.1471-4159.1992.tb09432.xSearch in Google Scholar

[166] Ebneth A., Godemann R., Stamer K., Illenberger S., Trinczek B., Mandelkow E., Overexpression of tau protein inhibits kinesindependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease, J. Cell Biol., 1998, 143, 777–794 http://dx.doi.org/10.1083/jcb.143.3.77710.1083/jcb.143.3.777Search in Google Scholar

[167] Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M. K., Trojanowski J. Q., et al., Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, Neuron, 1999, 24, 751–762 http://dx.doi.org/10.1016/S0896-6273(00)81127-710.1016/S0896-6273(00)81127-7Search in Google Scholar

[168] Ittner L. M., Fath T., Ke Y. D., Bi M., van Eersel J., Li K. M., et al., Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia, Proc. Natl. Acad. Sci. USA, 2008, 105, 15997–16002 http://dx.doi.org/10.1073/pnas.080808410510.1073/pnas.0808084105Search in Google Scholar

[169] Probst A., Gotz J., Wiederhold K. H., Tolnay M., Mistl C., Jaton A. L., et al., Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein, Acta Neuropathol., 2000, 99, 469–481 http://dx.doi.org/10.1007/s00401005114810.1007/s004010051148Search in Google Scholar

[170] Spittaels K., Van den Haute C., Van Dorpe J., Bruynseels K., Vandezande K., Laenen I., et al., Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein, Am. J. Pathol., 1999, 155, 2153–2165 http://dx.doi.org/10.1016/S0002-9440(10)65533-210.1016/S0002-9440(10)65533-2Search in Google Scholar

[171] Cote F., Collard J. F., Julien J. P., Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis, Cell, 1993, 73, 35–46 http://dx.doi.org/10.1016/0092-8674(93)90158-M10.1016/0092-8674(93)90158-MSearch in Google Scholar

[172] Xu Z., Cork L. C., Griffin J. W., Cleveland D. W., Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease, Cell, 1993, 73, 23–33 http://dx.doi.org/10.1016/0092-8674(93)90157-L10.1016/0092-8674(93)90157-LSearch in Google Scholar

[173] Zhang B., Higuchi M., Yoshiyama Y., Ishihara T., Forman M. S., Martinez D., et al., Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy, J. Neurosci., 2004, 24, 4657–4667 http://dx.doi.org/10.1523/JNEUROSCI.0797-04.200410.1523/JNEUROSCI.0797-04.2004Search in Google Scholar PubMed PubMed Central

[174] Higuchi M., Zhang B., Forman M. S., Yoshiyama Y., Trojanowski J. Q., Lee V. M., Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies, J. Neurosci., 2005, 25, 9434–9443 http://dx.doi.org/10.1523/JNEUROSCI.2691-05.200510.1523/JNEUROSCI.2691-05.2005Search in Google Scholar PubMed PubMed Central

[175] Bull N. D., Guidi A., Goedert M., Martin K. R., Spillantini M. G., Reduced axonal transport and increased excitotoxic retinal ganglion cell degeneration in mice transgenic for human mutant P301S tau, PLoS One, 2012, 7, e34724 http://dx.doi.org/10.1371/journal.pone.003472410.1371/journal.pone.0034724Search in Google Scholar PubMed PubMed Central

[176] Dixit R., Ross J. L., Goldman Y. E., Holzbaur E. L., Differential regulation of dynein and kinesin motor proteins by tau, Science, 2008, 319, 1086–1089 http://dx.doi.org/10.1126/science.115299310.1126/science.1152993Search in Google Scholar PubMed PubMed Central

[177] Falzone T. L., Stokin G. B., Lillo C., Rodrigues E. M., Westerman E. L., Williams D. S., et al., Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects, J. Neurosci., 2009, 29, 5758–5767 http://dx.doi.org/10.1523/JNEUROSCI.0780-09.200910.1523/JNEUROSCI.0780-09.2009Search in Google Scholar PubMed PubMed Central

[178] Santacruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., et al., Tau suppression in a neurodegenerative mouse model improves memory function, Science, 2005, 309, 476–481 http://dx.doi.org/10.1126/science.111369410.1126/science.1113694Search in Google Scholar PubMed PubMed Central

[179] Lewis J., Dickson D. W., Lin W. L., Chisholm L., Corral A., Jones G., et al., Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP, Science, 2001, 293, 1487–1491 http://dx.doi.org/10.1126/science.105818910.1126/science.1058189Search in Google Scholar PubMed

[180] Roberson E. D., Scearce-Levie K., Palop J. J., Yan F., Cheng I. H., Wu T., et al., Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model, Science, 2007, 316, 750–754 http://dx.doi.org/10.1126/science.114173610.1126/science.1141736Search in Google Scholar PubMed

[181] Falzone T. L., Gunawardena S., McCleary D., Reis G. F., Goldstein L. S., Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies, Hum. Mol. Genet., 2010, 19, 4399–4408 http://dx.doi.org/10.1093/hmg/ddq36310.1093/hmg/ddq363Search in Google Scholar

[182] Yuan A., Kumar A., Peterhoff C., Duff K., Nixon R. A., Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice, J. Neurosci., 2008, 28, 1682–1687 http://dx.doi.org/10.1523/JNEUROSCI.5242-07.200810.1523/JNEUROSCI.5242-07.2008Search in Google Scholar

[183] Kamal A., Stokin G. B., Yang Z, Xia C. H., Goldstein L. S., Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I, Neuron, 2000, 28, 449–459 http://dx.doi.org/10.1016/S0896-6273(00)00124-010.1016/S0896-6273(00)00124-0Search in Google Scholar

[184] Stokin G. B., Lillo C., Falzone T. L., Brusch R. G., Rockenstein E., Mount S. L., et al., Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease, Science, 2005, 307, 1282–1288 http://dx.doi.org/10.1126/science.110568110.1126/science.1105681Search in Google Scholar PubMed

[185] Wirths O., Weis J., Szczygielski J., Multhaup G., Bayer T. A., Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease, Acta Neuropathol., 2006, 111, 312–319 http://dx.doi.org/10.1007/s00401-006-0041-410.1007/s00401-006-0041-4Search in Google Scholar PubMed

[186] Hiruma H., Katakura T., Takahashi S., Ichikawa T., Kawakami T., Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms, J. Neurosci., 2003, 23, 8967–8977 10.1523/JNEUROSCI.23-26-08967.2003Search in Google Scholar

[187] Rui Y., Tiwari P., Xie Z., Zheng J. Q., Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons, J. Neurosci., 2006, 26, 10480–10487 http://dx.doi.org/10.1523/JNEUROSCI.3231-06.200610.1523/JNEUROSCI.3231-06.2006Search in Google Scholar PubMed PubMed Central

[188] Decker H., Lo K. Y., Unger S. M., Ferreira S. T., Silverman M. A., Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons, J. Neurosci., 2010, 30, 9166–9171 10.1523/JNEUROSCI.1074-10.2010Search in Google Scholar PubMed PubMed Central

[189] Pigino G., Morfini G., Atagi Y., Deshpande A., Yu C., Jungbauer L., et al., Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta, Proc. Natl. Acad. Sci. USA, 2009, 106, 5907–5912 http://dx.doi.org/10.1073/pnas.090122910610.1073/pnas.0901229106Search in Google Scholar PubMed PubMed Central

[190] Pigino G., Morfini G., Pelsman A., Mattson M. P., Brady S. T., Busciglio J., Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport, J. Neurosci., 2003, 23, 4499–4508 10.1523/JNEUROSCI.23-11-04499.2003Search in Google Scholar

[191] Lazarov O., Morfini G. A., Pigino G., Gadadhar A., Chen X., Robinson J., et al., Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s diseaselinked mutant presenilin 1, J. Neurosci., 2007, 27, 7011–7020 http://dx.doi.org/10.1523/JNEUROSCI.4272-06.200710.1523/JNEUROSCI.4272-06.2007Search in Google Scholar

[192] Cai D., Leem J. Y., Greenfield J. P., Wang P., Kim B. S., Wang R., et al., Presenilin-1 regulates intracellular trafficking and cell surface delivery of beta-amyloid precursor protein, J. Biol. Chem., 2003, 278, 3446–3454 http://dx.doi.org/10.1074/jbc.M20906520010.1074/jbc.M209065200Search in Google Scholar

[193] Tesseur I., Van Dorpe J., Bruynseels K., Bronfman F., Sciot R., Van Lommel A., et al., Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord, Am. J. Pathol., 2000, 157, 1495–1510 http://dx.doi.org/10.1016/S0002-9440(10)64788-810.1016/S0002-9440(10)64788-8Search in Google Scholar

[194] Haberland C., Frontotemporal dementia or frontotemporal lobar degeneration -overview of a group of proteinopathies, Ideggyogy Sz., 2010, 63, 87–93 Search in Google Scholar

[195] Fujioka S., Wszolek Z. K., Clinical aspects of familial forms of frontotemporal dementia associated with parkinsonism, J. Mol. Neurosci., 2011, 45, 359–365 http://dx.doi.org/10.1007/s12031-011-9568-510.1007/s12031-011-9568-5Search in Google Scholar PubMed PubMed Central

[196] Ghazi-Noori S., Froud K. E., Mizielinska S., Powell C., Smidak M., Fernandez de Marco M., et al., Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice, Brain, 2012, 135, 819–832 http://dx.doi.org/10.1093/brain/aws00610.1093/brain/aws006Search in Google Scholar PubMed

[197] Urwin H., Authier A., Nielsen J. E., Metcalf D., Powell C., Froud K., et al., Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations, Hum. Mol. Genet., 2010, 19, 2228–2238 http://dx.doi.org/10.1093/hmg/ddq10010.1093/hmg/ddq100Search in Google Scholar PubMed PubMed Central

[198] Ittner L. M., Ke Y. D., Gotz J., Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease, J. Biol. Chem., 2009, 284, 20909–20916 http://dx.doi.org/10.1074/jbc.M109.01447210.1074/jbc.M109.014472Search in Google Scholar PubMed PubMed Central

[199] Magnani E., Fan J., Gasparini L., Golding M., Williams M., Schiavo G., et al., Interaction of tau protein with the dynactin complex, EMBO J., 2007, 26, 4546–4554 http://dx.doi.org/10.1038/sj.emboj.760187810.1038/sj.emboj.7601878Search in Google Scholar PubMed PubMed Central

[200] Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B. I., et al., Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, Science, 1998, 282, 1914–1917 http://dx.doi.org/10.1126/science.282.5395.191410.1126/science.282.5395.1914Search in Google Scholar PubMed

[201] Stoothoff W., Jones P. B., Spires-Jones T. L., Joyner D., Chhabra E., Bercury K., et al., Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport, J. Neurochem., 2009, 111, 417–427 http://dx.doi.org/10.1111/j.1471-4159.2009.06316.x10.1111/j.1471-4159.2009.06316.xSearch in Google Scholar PubMed PubMed Central

[202] Tien N. W., Wu G. H., Hsu C. C., Chang C. Y., Wagner O. I., Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor’s motility characteristics in C. elegans neurons, Neurobiol. Dis., 2011, 43, 495–506 http://dx.doi.org/10.1016/j.nbd.2011.04.02310.1016/j.nbd.2011.04.023Search in Google Scholar PubMed

[203] Gilley J., Seereeram A., Ando K., Mosely S., Andrews S., Kerschensteiner M., et al., Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse, Neurobiol. Aging, 2012, 33, 621.e1–621.e15 http://dx.doi.org/10.1016/j.neurobiolaging.2011.02.01410.1016/j.neurobiolaging.2011.02.014Search in Google Scholar PubMed

[204] Mulder D. W., Clinical limits of amyotrophic lateral sclerosis, Adv. Neurol., 1982, 36, 15–22 Search in Google Scholar

[205] Rowland L. P., Shneider N. A., Amyotrophic lateral sclerosis, N. Engl. J. Med., 2001, 344, 1688–1700 http://dx.doi.org/10.1056/NEJM20010531344220710.1056/NEJM200105313442207Search in Google Scholar PubMed

[206] Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, 1993, 362, 59–62 http://dx.doi.org/10.1038/362059a010.1038/362059a0Search in Google Scholar PubMed

[207] Zhang B., Tu P., Abtahian F., Trojanowski J. Q., Lee V. M., Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation, J. Cell Biol., 1997, 139, 1307–1315 http://dx.doi.org/10.1083/jcb.139.5.130710.1083/jcb.139.5.1307Search in Google Scholar PubMed PubMed Central

[208] Williamson T. L., Cleveland D. W., Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons, Nat. Neurosci., 1999, 2, 50–56 http://dx.doi.org/10.1038/455310.1038/4553Search in Google Scholar PubMed

[209] Borchelt D. R., Wong P. C., Becher M. W., Pardo C. A., Lee M. K., Xu Z. S., et al., Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice, Neurobiol. Dis., 1998, 5, 27–35 http://dx.doi.org/10.1006/nbdi.1998.017810.1006/nbdi.1998.0178Search in Google Scholar PubMed

[210] Tateno M., Kato S., Sakurai T., Nukina N., Takahashi R., Araki T., Mutant SOD1 impairs axonal transport of choline acetyltransferase and acetylcholine release by sequestering KAP3, Hum. Mol. Genet., 2009, 18, 942–955 10.1093/hmg/ddn422Search in Google Scholar PubMed PubMed Central

[211] Landers J. E., Melki J., Meininger V., Glass J. D., van den Berg L. H., van Es M. A., et al., Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA, 2009, 106, 9004–9009 http://dx.doi.org/10.1073/pnas.081293710610.1073/pnas.0812937106Search in Google Scholar PubMed PubMed Central

[212] Dupuis L., de Tapia M., Rene F., Lutz-Bucher B., Gordon J. W., Mercken L., et al., Differential screening of mutated SOD1 transgenic mice reveals early up-regulation of a fast axonal transport component in spinal cord motor neurons, Neurobiol. Dis., 2000, 7, 274–285 http://dx.doi.org/10.1006/nbdi.2000.029210.1006/nbdi.2000.0292Search in Google Scholar PubMed

[213] Murakami T., Nagano I., Hayashi T., Manabe Y., Shoji M., Setoguchi Y., et al., Impaired retrograde axonal transport of adenovirusmediated E. coli LacZ gene in the mice carrying mutant SOD1 gene, Neurosci. Lett., 2001, 308, 149–152 http://dx.doi.org/10.1016/S0304-3940(01)02036-510.1016/S0304-3940(01)02036-5Search in Google Scholar

[214] Ligon L. A., LaMonte B. H., Wallace K. E., Weber N., Kalb R. G., Holzbaur E. L., Mutant superoxide dismutase disrupts cytoplasmic dynein in motor neurons, Neuroreport, 2005, 16, 533–536 http://dx.doi.org/10.1097/00001756-200504250-0000210.1097/00001756-200504250-00002Search in Google Scholar PubMed

[215] Bilsland L. G., Sahai E., Kelly G., Golding M., Greensmith L., Schiavo G., Deficits in axonal transport precede ALS symptoms in vivo, Proc. Natl. Acad. Sci. USA, 2010, 107, 20523–20528 http://dx.doi.org/10.1073/pnas.100686910710.1073/pnas.1006869107Search in Google Scholar PubMed PubMed Central

[216] Munch C., Sedlmeier R., Meyer T., Homberg V., Sperfeld A. D., Kurt A., et al., Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS, Neurology, 2004, 63, 724–726 http://dx.doi.org/10.1212/01.WNL.0000134608.83927.B110.1212/01.WNL.0000134608.83927.B1Search in Google Scholar PubMed

[217] Moore J. K., Sept D., Cooper J. A., Neurodegeneration mutations in dynactin impair dynein-dependent nuclear migration, Proc. Natl. Acad. Sci. USA, 2009, 106, 5147–5152 http://dx.doi.org/10.1073/pnas.081082810610.1073/pnas.0810828106Search in Google Scholar PubMed PubMed Central

[218] Pasinelli P., Brown R. H., Molecular biology of amyotrophic lateral sclerosis: insights from genetics, Nat. Rev. Neurosci., 2006, 7, 710–723 http://dx.doi.org/10.1038/nrn197110.1038/nrn1971Search in Google Scholar PubMed

[219] Puls I., Jonnakuty C., LaMonte B. H., Holzbaur E. L., Tokito M., Mann E., et al., Mutant dynactin in motor neuron disease, Nat. Genet., 2003, 33, 455–456 http://dx.doi.org/10.1038/ng112310.1038/ng1123Search in Google Scholar PubMed

[220] Teuchert M., Fischer D., Schwalenstoecker B., Habisch H. J., Bockers T. M., Ludolph A. C., A dynein mutation attenuates motor neuron degeneration in SOD1(G93A) mice, Exp. Neurol., 2006, 198, 271–274 http://dx.doi.org/10.1016/j.expneurol.2005.12.00510.1016/j.expneurol.2005.12.005Search in Google Scholar PubMed

[221] Kieran D., Hafezparast M., Bohnert S., Dick J. R., Martin J., Schiavo G., et al., A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice, J. Cell Biol., 2005, 169, 561–567 http://dx.doi.org/10.1083/jcb.20050108510.1083/jcb.200501085Search in Google Scholar PubMed PubMed Central

[222] Teuling E., van Dis V., Wulf P. S., Haasdijk E. D., Akhmanova A., Hoogenraad C. C., et al., A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice, Hum. Mol. Genet., 2008, 17, 2849–2862 http://dx.doi.org/10.1093/hmg/ddn18210.1093/hmg/ddn182Search in Google Scholar PubMed

[223] LaMonte B. H., Wallace K. E., Holloway B. A., Shelly S. S., Ascano J., Tokito M., et al., Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration, Neuron, 2002, 34, 715–727 http://dx.doi.org/10.1016/S0896-6273(02)00696-710.1016/S0896-6273(02)00696-7Search in Google Scholar

[224] Gepner J., Li M., Ludmann S., Kortas C., Boylan K., Iyadurai S. J., et al., Cytoplasmic dynein function is essential in Drosophila melanogaster, Genetics, 1996, 142, 865–878 10.1093/genetics/142.3.865Search in Google Scholar

[225] Chevalier-Larsen E. S., Wallace K. E., Pennise C. R., Holzbaur E. L., Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin, Hum. Mol. Genet., 2008, 17, 1946–1955 http://dx.doi.org/10.1093/hmg/ddn09210.1093/hmg/ddn092Search in Google Scholar

[226] Robertson J., Doroudchi M. M., Nguyen M. D., Durham H. D., Strong M. J., Shaw G., et al., A neurotoxic peripherin splice variant in a mouse model of ALS, J. Cell Biol., 2003, 160, 939–949 http://dx.doi.org/10.1083/jcb.20020502710.1083/jcb.200205027Search in Google Scholar

[227] Kong J., Xu Z., Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1, J. Neurosci., 1998, 18, 3241–3250 10.1523/JNEUROSCI.18-09-03241.1998Search in Google Scholar

[228] Marinkovic P., Reuter M. S., Brill M. S., Godinho L., Kerschensteiner M., Misgeld T., Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA, 2012, 109, 4296–4301 10.1073/pnas.1200658109Search in Google Scholar

[229] Bendotti C., Atzori C., Piva R., Tortarolo M., Strong M. J., DeBiasi S., Migheli A., Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice, J. Neuropathol. Exp. Neurol., 2004, 63, 113–119 10.1093/jnen/63.2.113Search in Google Scholar

[230] Tortarolo M., Veglianese P., Calvaresi N., Botturi A., Rossi C., Giorgini A., et al., Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression, Mol. Cell. Neurosci., 2003, 23, 180–192 http://dx.doi.org/10.1016/S1044-7431(03)00022-810.1016/S1044-7431(03)00022-8Search in Google Scholar

[231] Morfini G. A., Burns M., Binder L. I., Kanaan N. M., LaPointe N., Bosco D. A., et al., Axonal transport defects in neurodegenerative diseases, J. Neurosci., 2009, 29, 12776–12786 http://dx.doi.org/10.1523/JNEUROSCI.3463-09.200910.1523/JNEUROSCI.3463-09.2009Search in Google Scholar PubMed PubMed Central

[232] Pizzuti A., Petrucci S., Mitochondrial disfunction as a cause of ALS, Arch. Ital. Biol., 2011, 149, 113–119 Search in Google Scholar

[233] Rothstein J. D., Excitotoxicity hypothesis, Neurology, 1996, 47, S19–25; discussion S26 http://dx.doi.org/10.1212/WNL.47.4_Suppl_2.19S10.1212/WNL.47.4_Suppl_2.19SSearch in Google Scholar PubMed

[234] Wiedau-Pazos M., Goto J. J., Rabizadeh S., Gralla E. B., Roe J. A., Lee M. K., et al., Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis, Science, 1996, 271, 515–518 http://dx.doi.org/10.1126/science.271.5248.51510.1126/science.271.5248.515Search in Google Scholar

[235] Zhang Y., Marcillat O., Giulivi C., Ernster L., Davies K. J., The oxidative inactivation of mitochondrial electron transport chain components and ATPase, J. Biol. Chem., 1990, 265, 16330–16336 10.1016/S0021-9258(17)46227-2Search in Google Scholar

[236] Salinas S., Proukakis C., Crosby A., Warner T. T., Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms, Lancet Neurol., 2008, 7, 1127–1138 http://dx.doi.org/10.1016/S1474-4422(08)70258-810.1016/S1474-4422(08)70258-8Search in Google Scholar

[237] Blackstone C., O’Kane C. J., Reid E., Hereditary spastic paraplegias: membrane traffic and the motor pathway, Nat. Rev. Neurosci., 2011, 12, 31–42 http://dx.doi.org/10.1038/nrn299010.1038/nrn2990Search in Google Scholar

[238] Reid E., Kloos M., Ashley-Koch A., Hughes L., Bevan S., Svenson I. K., et al., A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10), Am. J. Hum. Genet., 2002, 71, 1189–1194 http://dx.doi.org/10.1086/34421010.1086/344210Search in Google Scholar PubMed PubMed Central

[239] Fichera M., Lo Giudice M., Falco M., Sturnio M., Amata S., Calabrese O., et al., Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia, Neurology, 2004, 63, 1108–1110 http://dx.doi.org/10.1212/01.WNL.0000138731.60693.D210.1212/01.WNL.0000138731.60693.D2Search in Google Scholar PubMed

[240] Ebbing B., Mann K., Starosta A., Jaud J., Schols L., Schule R., et al., Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity, Hum. Mol. Genet., 2008, 17, 1245–1252 http://dx.doi.org/10.1093/hmg/ddn01410.1093/hmg/ddn014Search in Google Scholar PubMed

[241] Ferreirinha F., Quattrini A., Pirozzi M., Valsecchi V., Dina G., Broccoli V., et al., Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport, J. Clin. Invest., 2004, 113, 231–242 10.1172/JCI200420138Search in Google Scholar

[242] Baas P. W., Karabay A., Qiang L., Microtubules cut and run, Trends Cell Biol., 2005, 15, 518–524 http://dx.doi.org/10.1016/j.tcb.2005.08.00410.1016/j.tcb.2005.08.004Search in Google Scholar PubMed

[243] Zhao X., Alvarado D., Rainier S., Lemons R., Hedera P., Weber C. H., et al., Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia, Nat. Genet., 2001, 29, 326–331 http://dx.doi.org/10.1038/ng75810.1038/ng758Search in Google Scholar PubMed

[244] Hazan J., Fonknechten N., Mavel D., Paternotte C., Samson D., Artiguenave F., et al., Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia, Nat. Genet., 1999, 23, 296–303 http://dx.doi.org/10.1038/1547210.1038/15472Search in Google Scholar PubMed

[245] Goizet C., Depienne C., Benard G., Boukhris A., Mundwiller E., Sole G., et al., REEP1 mutations in SPG31: frequency, mutational spectrum, and potential association with mitochondrial morphofunctional dysfunction, Hum. Mutat., 2011, 32, 1118–1127 http://dx.doi.org/10.1002/humu.2154210.1002/humu.21542Search in Google Scholar PubMed

[246] Kasher P. R., De Vos K. J., Wharton S. B., Manser C., Bennett E. J., Bingley M., et al., Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients, J. Neurochem., 2009, 110, 34–44 http://dx.doi.org/10.1111/j.1471-4159.2009.06104.x10.1111/j.1471-4159.2009.06104.xSearch in Google Scholar PubMed

[247] Tarrade A., Fassier C., Courageot S., Charvin D., Vitte J., Peris L., et al., A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition, Hum. Mol. Genet., 2006, 15, 3544–3558 http://dx.doi.org/10.1093/hmg/ddl43110.1093/hmg/ddl431Search in Google Scholar PubMed

[248] Zuchner S., Vance J. M., Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies, Nat. Clin. Pract. Neurol., 2006, 2, 45–53 http://dx.doi.org/10.1038/ncpneuro007110.1038/ncpneuro0071Search in Google Scholar PubMed

[249] Crimella C., Baschirotto C., Arnoldi A., Tonelli A., Tenderini E., Airoldi G., et al., Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal Charcot-Marie-Tooth type 2, Clin. Genet., 2011 10.1111/j.1399-0004.2011.01717.xSearch in Google Scholar PubMed

[250] Willemsen M. H., Vissers L. E., Willemsen M. A., van Bon B. W., Kroes T., de Ligt J., et al., Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects, J. Med. Genet., 2012, 49, 179–183 http://dx.doi.org/10.1136/jmedgenet-2011-10054210.1136/jmedgenet-2011-100542Search in Google Scholar PubMed

[251] d’Ydewalle C., Krishnan J., Chiheb D.M., Van Damme P., Irobi J., Kozikowski A.P., et al., HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease, Nat. Med., 2011, 17, 968–974 http://dx.doi.org/10.1038/nm.239610.1038/nm.2396Search in Google Scholar PubMed

[252] Estela A., Pla-Martin D., Sanchez-Piris M., Sesaki H., Palau F., Charcot-Marie-Tooth-related gene GDAP1 complements cell cycle delay at G2/M phase in Saccharomyces cerevisiae fis1 gene-defective cells, J. Biol. Chem., 2011, 286, 36777–36786 http://dx.doi.org/10.1074/jbc.M111.26004210.1074/jbc.M111.260042Search in Google Scholar PubMed PubMed Central

[253] Cassereau J., Chevrollier A., Gueguen N., Desquiret V., Verny C., Nicolas G., et al., Mitochondrial dysfunction and pathophysiology of Charcot-Marie-Tooth disease involving GDAP1 mutations, Exp. Neurol., 2011, 227, 31–41 http://dx.doi.org/10.1016/j.expneurol.2010.09.00610.1016/j.expneurol.2010.09.006Search in Google Scholar PubMed

[254] Warren G., Wickner W., Organelle inheritance, Cell, 1996, 84, 395–400 http://dx.doi.org/10.1016/S0092-8674(00)81284-210.1016/S0092-8674(00)81284-2Search in Google Scholar

[255] Kabzinska D., Niemann A., Drac H., Huber N., Potulska-Chromik A., Hausmanowa-Petrusewicz I., et al., A new missense GDAP1 mutation disturbing targeting to the mitochondrial membrane causes a severe form of AR-CMT2C disease, Neurogenetics, 2011, 12, 145–153 http://dx.doi.org/10.1007/s10048-011-0276-710.1007/s10048-011-0276-7Search in Google Scholar

[256] Baxter R. V., Ben Othmane K., Rochelle J. M., Stajich J. E., Hulette C., Dew-Knight S., et al., Ganglioside-induced differentiationassociated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21, Nat. Genet., 2002, 30, 21–22 http://dx.doi.org/10.1038/ng79610.1038/ng796Search in Google Scholar

[257] Misko A., Jiang, S., Wegorzewska, I., Milbrandt, J., Baloh, R. H., Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex, J. Neurosci., 2010, 30, 4232–4240 http://dx.doi.org/10.1523/JNEUROSCI.6248-09.201010.1523/JNEUROSCI.6248-09.2010Search in Google Scholar

[258] Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., et al., Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation, Cell, 1997, 90, 537–548 http://dx.doi.org/10.1016/S0092-8674(00)80513-910.1016/S0092-8674(00)80513-9Search in Google Scholar

[259] Shirendeb U. P., Calkins M. J., Manczak M., Anekonda V., Dufour B., McBride J. L., et al., Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease, Hum. Mol. Genet., 2012, 21, 406–420 http://dx.doi.org/10.1093/hmg/ddr47510.1093/hmg/ddr475Search in Google Scholar

[260] Morfini G. A., You Y. M., Pollema S. L., Kaminska A., Liu K., Yoshioka K., et al., Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin, Nat. Neurosci., 2009, 12, 864–871 http://dx.doi.org/10.1038/nn.234610.1038/nn.2346Search in Google Scholar

[261] Gunawardena S., Her L. S., Brusch R. G., Laymon R. A., Niesman I. R., Gordesky-Gold B., et al., Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila, Neuron, 2003, 40, 25–40 http://dx.doi.org/10.1016/S0896-6273(03)00594-410.1016/S0896-6273(03)00594-4Search in Google Scholar

[262] Hurd D. D., Saxton W. M., Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila, Genetics, 1996, 144, 1075–1085 10.1093/genetics/144.3.1075Search in Google Scholar PubMed PubMed Central

[263] Ticozzi N., Ratti A., Silani V., Protein aggregation and defective RNA metabolism as mechanisms for motor neuron damage, CNS Neurol. Disord. Drug Targets, 2010, 9, 285–296 http://dx.doi.org/10.2174/18715271079129258510.2174/187152710791292585Search in Google Scholar PubMed

[264] Weedon M. N., Hastings R., Caswell R., Xie W., Paszkiewicz K., Antoniadi T., et al., Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease, Am. J. Hum. Genet., 2011, 89, 308–312 http://dx.doi.org/10.1016/j.ajhg.2011.07.00210.1016/j.ajhg.2011.07.002Search in Google Scholar PubMed PubMed Central

[265] Piccioni F., Pinton P., Simeoni S., Pozzi P., Fascio U., Vismara G., et al., Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes, FASEB J., 2002, 16, 1418–1420 10.1096/fj.01-1035fjeSearch in Google Scholar PubMed

[266] Kemp M. Q., Poort J. L., Baqri R. M., Lieberman A. P., Breedlove S. M., Miller K. E., et al., Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action, Hum. Mol. Genet., 2011, 20, 4475–4490 http://dx.doi.org/10.1093/hmg/ddr38010.1093/hmg/ddr380Search in Google Scholar PubMed PubMed Central

[267] La Spada A. R., Wilson E. M., Lubahn D. B., Harding A. E., Fischbeck K. H., Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy, Nature, 1991, 352, 77–79 http://dx.doi.org/10.1038/352077a010.1038/352077a0Search in Google Scholar PubMed

[268] Saha A. R., Hill J., Utton M. A., Asuni A. A., Ackerley S., Grierson A. J., et al., Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons, J. Cell Sci., 2004, 117, 1017–1024 http://dx.doi.org/10.1242/jcs.0096710.1242/jcs.00967Search in Google Scholar PubMed

[269] Abou-Sleiman P. M., Muqit M. M., Wood N. W., Expanding insights of mitochondrial dysfunction in Parkinson’s disease, Nat. Rev. Neurosci., 2006, 7, 207–219 http://dx.doi.org/10.1038/nrn186810.1038/nrn1868Search in Google Scholar PubMed

[270] Miller K. E., Sheetz M. P., Axonal mitochondrial transport and potential are correlated, J. Cell Sci., 2004, 117, 2791–2804 http://dx.doi.org/10.1242/jcs.0113010.1242/jcs.01130Search in Google Scholar PubMed

[271] Morfini G., Pigino G., Opalach K., Serulle Y., Moreira J. E., Sugimori M., et al., 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C, Proc. Natl. Acad. Sci. USA, 2007, 104, 2442–2447 http://dx.doi.org/10.1073/pnas.061123110410.1073/pnas.0611231104Search in Google Scholar PubMed PubMed Central

[272] Su K. G., Banker G., Bourdette D., Forte M., Axonal degeneration in multiple sclerosis: the mitochondrial hypothesis, Curr. Neurol. Neurosci. Rep., 2009, 9, 411–417 http://dx.doi.org/10.1007/s11910-009-0060-310.1007/s11910-009-0060-3Search in Google Scholar PubMed PubMed Central

[273] Pagliardini S., Giavazzi A., Setola V., Lizier C., Di Luca M., DeBiasi S., et al., Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord, Hum. Mol. Genet., 2000, 9, 47–56 http://dx.doi.org/10.1093/hmg/9.1.4710.1093/hmg/9.1.47Search in Google Scholar PubMed

[274] Fallini C., Bassell G. J., Rossoll W., Spinal muscular atrophy: The role of SMN in axonal mRNA regulation, Brain Res., 2012, 1462, 81–92 http://dx.doi.org/10.1016/j.brainres.2012.01.04410.1016/j.brainres.2012.01.044Search in Google Scholar

[275] Morfini G., Pigino G., Brady S. T., Polyglutamine expansion diseases: failing to deliver, Trends Mol. Med., 2005, 11, 64–70 http://dx.doi.org/10.1016/j.molmed.2004.12.00210.1016/j.molmed.2004.12.002Search in Google Scholar

[276] Takahashi T., Katada S., Onodera O., Polyglutamine diseases: where does toxicity come from? What is toxicity? Where are we going?, J. Mol. Cell. Biol., 2010, 2, 180–191 http://dx.doi.org/10.1093/jmcb/mjq00510.1093/jmcb/mjq005Search in Google Scholar

[277] Feany M. B., La Spada A. R., Polyglutamines stop traffic: axonal transport as a common target in neurodegenerative diseases, Neuron, 2003, 40, 1–2 http://dx.doi.org/10.1016/S0896-6273(03)00600-710.1016/S0896-6273(03)00600-7Search in Google Scholar

[278] Ermolayev V., Cathomen T., Merk J., Friedrich M., Hartig W., Harms G. S., et al., Impaired axonal transport in motor neurons correlates with clinical prion disease, PLoS Pathog., 2009, 5, e1000558 http://dx.doi.org/10.1371/journal.ppat.100055810.1371/journal.ppat.1000558Search in Google Scholar

[279] Almasieh M., Wilson A. M., Morquette B., Cueva Vargas J. L., Di Polo A., The molecular basis of retinal ganglion cell death in glaucoma, Prog. Retin. Eye Res., 2012, 31, 152–181 http://dx.doi.org/10.1016/j.preteyeres.2011.11.00210.1016/j.preteyeres.2011.11.002Search in Google Scholar

[280] Lorenzo D. N., Li M. G., Mische S. E., Armbrust K. R., Ranum L. P., Hays T. S., Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila, J. Cell Biol., 2010, 189, 143–158 http://dx.doi.org/10.1083/jcb.20090515810.1083/jcb.200905158Search in Google Scholar

[281] Smith D. H., Uryu K., Saatman K. E., Trojanowski J. Q., McIntosh T. K., Protein accumulation in traumatic brain injury, Neuromolecular Med., 2003, 4, 59–72 http://dx.doi.org/10.1385/NMM:4:1-2:5910.1385/NMM:4:1-2:59Search in Google Scholar

[282] Bernier G., Kothary R., Prenatal onset of axonopathy in Dystonia musculorum mice, Dev. Genet., 1998, 22, 160–168 http://dx.doi.org/10.1002/(SICI)1520-6408(1998)22:2<160::AID-DVG5>3.0.CO;2-410.1002/(SICI)1520-6408(1998)22:2<160::AID-DVG5>3.0.CO;2-4Search in Google Scholar

[283] Furlong R. A., Zhou C. Y., Ferguson-Smith M. A., Affara N. A., Characterization of a kinesin-related gene ATSV, within the tuberous sclerosis locus (TSC1) candidate region on chromosome 9Q34, Genomics, 1996, 33, 421–429 http://dx.doi.org/10.1006/geno.1996.021710.1006/geno.1996.0217Search in Google Scholar

Published Online: 2012-11-20
Published in Print: 2012-12-1

© 2012 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-012-0044-7/html
Scroll to top button