Skip to main content
Log in

Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The sleep disorder narcolepsy is now linked with a loss of neurons containing the neuropeptide hypocretin (also known as orexin). The hypocretin neurons are located exclusively in the lateral hypothalamus, a brain region that has been implicated in arousal based on observations made by von Economo during the viral encephalitic epidemic of 1916–1926. There are other neuronal phenotypes located in the lateral hypothalamus that are distinct and separate from the hypocretin neurons. Here the authors identify these neurons based on peptides and neurotransmitters that they express and review roles of these neurons in sleep. Given the heterogeneity of the neuronal phenotypes in the lateral hypothalamus, it is likely that hypocretin neurons, as well as other types of neurons in the lateral hypothalamus, influence sleep and provide state-dependent regulation of physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin L., Faraco J., Li R., Kadotani H., Rogers W., and Lin X., et al. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.

    PubMed  CAS  Google Scholar 

  2. Thannickal T. C., Moore R. Y., Nienhuis R., Ramanathan L., Gulyani S., Aldrich M., et al. (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474.

    PubMed  CAS  Google Scholar 

  3. Peyron C., Faraco J., Rogers W., Ripley B., Overeem S., Charnay Y., et al. (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997.

    PubMed  CAS  Google Scholar 

  4. De Lecea L., Kilduff T. S., Peyron C., Gao X., Foye P. E., Danielson P. E., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95, 322–327.

    PubMed  Google Scholar 

  5. Peyron C., Tighe D. K., van den Pol A. N., De Lecea L., Heller H. C., Sutcliffe J. G., and Kilduff T. S. (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10,015.

    PubMed  CAS  Google Scholar 

  6. Sakurai T., Amemiya A., Ishii M., Matsuzaki I., Chemelli R. M., Tanaka H., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    PubMed  CAS  Google Scholar 

  7. Kilduff T. S. and Peyron C. (2000) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 23, 359–365.

    PubMed  CAS  Google Scholar 

  8. Sutcliffe J. G. and de Lecea L. (2002) The hypocretins: setting the arousal threshold. Nat. Rev. Neurosci. 3, 339–349.

    PubMed  CAS  Google Scholar 

  9. Veening J. G., Te L. S., Posthuma P., Geeraedts L. M., and Nieuwenhuys R. (1987) A topographical analysis of the origin of some efferent projections from the lateral hypothalamic area in the rat. Neuroscience 22, 537–551.

    PubMed  CAS  Google Scholar 

  10. Von Economo C. (1930) Sleep as a problem of localization. J. Nerv. Ment. Dis. 71, 249–259.

    Google Scholar 

  11. Nauta W. J. H. (1946) Hypothalamic regulation of sleep in rats. An experimental study. J. Neurophysiol. 9, 285–316.

    Google Scholar 

  12. Harrison F. (1940) An attempt to produce sleep by diencephalic stimulation. J. Neurophysiol. 3, 156–165.

    Google Scholar 

  13. Ranson S. W. (1939) Somnolence caused by hypothalamic lesions in the monkey. Arch. Neurol. Psychiat. 41, 1–23.

    Google Scholar 

  14. McGinty D. J. (1969) Somnolence, recovery and hyposomnia following ventro-medial diencephalic lesions in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 70–79.

    PubMed  CAS  Google Scholar 

  15. Shoham S. and Teitelbaum P. (1982) Subcortical waking and sleep during lateral hypothalamic “somnolence” in rats. Physiol. Behav. 28, 323–333.

    PubMed  CAS  Google Scholar 

  16. Nieuwenhuys R., Geeraedts L. M., and Veening J. G. (1982) The medial forebrain bundle of the rat. I. General introduction. J. Comp. Neurol. 206, 49–81.

    PubMed  CAS  Google Scholar 

  17. Denoyer M., Sallanon M., Buda C., Kitahama K., and Jouvet M. (1991) Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat. Brain Res. 539, 287–303.

    PubMed  CAS  Google Scholar 

  18. Sallanon M., Sakai K., Buda C., Puymartin M., and Jouvet M. (1988) Increase of paradoxical sleep induced by microinjections of ibotenic acid into the ventrolateral part of the posterior hypothalamus in the cat. Arch. Ital. Biol. 126, 87–97.

    PubMed  CAS  Google Scholar 

  19. Winn P., Tarbuck A., and Dunnett S. B. (1984) Ibotenic acid lesions of the lateral hypothalamus: comparison with the electrolytic lesion syndrome. Neuroscience 12, 225–240.

    PubMed  CAS  Google Scholar 

  20. Orzel-Gryglewska J., Jurkowlaniec E., Nowacka A., Tokarski J., and Trojniar W. (2000) Anatomical correlates of the lateral hypothalamic influence on waking-sleep relationship in the rat. Acta Neurobiol. Exp. (Warsz.) 60, 309–322.

    CAS  Google Scholar 

  21. Danguir J. and Nicolaidis S. (1980) Cortical activity and sleep in the rat lateral hypothalamic syndrome. Brain Res. 185, 305–321.

    PubMed  CAS  Google Scholar 

  22. Jurkowlaniec E., Trojniar W., and Tokarski J. (1994) Daily pattern of EEG activity in rats with lateral hypothalamic lesions. J. Physiol. Pharmacol. 45, 399–411.

    PubMed  CAS  Google Scholar 

  23. Gerashchenko D., Kohls M. D., Greco M., Waleh N. S., Salin-Pascual R., Kilduff T. S., et al. (2001) Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J. Neurosci. 21, 7273–7283.

    PubMed  CAS  Google Scholar 

  24. Stirpe F., Barbieri L., Battelli M. G., Soria M., and Lappi D. A. (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (NY) 10, 405–412.

    CAS  Google Scholar 

  25. Bergamaschi G., Perfetti V., Tonon L., Novella A., Lucotti C., Danova M., et al. (1996) Saporin, a ribosome-inactivating protein used to prepare immunotoxins, induces cell death via apoptosis. Br. J. Haematol. 93, 789–794.

    PubMed  CAS  Google Scholar 

  26. Mantyh P. W., Rogers S. D., Honore P., Allen B. J., Ghilardi J. R., Li J., et al. (1997) Inhibition of hyperalgesia by ablation of lamina 1 spinal neurons expressing the substance P receptor. Science 278, 275–279.

    PubMed  CAS  Google Scholar 

  27. Gerashchenko D., Blanco-Centurion C., Greco M. A., and Shiromani P. J. (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116, 223–235.

    PubMed  CAS  Google Scholar 

  28. Nishino S., Ripley B., Overeem S., Lammers G. J., and Mignot E. (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40.

    PubMed  CAS  Google Scholar 

  29. Overeem S., Mignot E., van Dijk J. G., and Lammers G. J. (2001) Narcolepsy: clinical features, new pathophysiologic insights, and future perspectives. J. Clin. Neurophysiol. 18, 78–105.

    PubMed  CAS  Google Scholar 

  30. Chemelli R. M., Willie J. T., Sinton C. M., Elmquist J. K., Scammell T., Lee C., et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.

    PubMed  CAS  Google Scholar 

  31. Hara J., Beuckmann C. T., Nambu T., Willie J. T., Chemelli R. M., Sinton C. M., et al. (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354.

    PubMed  CAS  Google Scholar 

  32. Ripley B., Overeem S., Fujiki N., Nevsimalova S., Uchino M., Yesavage J., et al. (2001) CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57, 2253–2258.

    PubMed  CAS  Google Scholar 

  33. Abrahamson E. E. and Moore R. Y. (2001) The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res. 889, 1–22.

    PubMed  CAS  Google Scholar 

  34. Rao Z. R., Yamano M., Wanaka A., Tatehata T., Shiosaka S., and Tohyama M. (1987) Distribution of cholinergic neurons and fibers in the hypothalamus of the rat using choline acetyltransferase as a marker. Neuroscience 20, 923–934.

    PubMed  CAS  Google Scholar 

  35. Allen G. V. and Cechetto D. F. (1995) Neurotensin in the lateral hypothalamic area: origin and function. Neuroscience 69, 533–544.

    PubMed  CAS  Google Scholar 

  36. Kelly A. B. and Watts A. G. (1998) The region of the pontine parabrachial nucleus is a major target of dehydration-sensitive CRH neurons in the rat lateral hypothalamic area. J. Comp. Neurol. 394, 48–63.

    PubMed  CAS  Google Scholar 

  37. Sawchenko P. E., Swanson L. W., Rivier J., and Vale W. W. (1985) The distribution of growth-hormone-releasing factor (GRF) immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GRF. J. Comp. Neurol. 237, 100–115.

    PubMed  CAS  Google Scholar 

  38. Lechan R. M., Nestler J. L., and Molitch M. E. (1981) Immunohistochemical identification of a novel substance with human growth hormone-like immunoreactivity in rat brain. Endocrinology 109, 1950–1962.

    PubMed  CAS  Google Scholar 

  39. Larsen P. J. (1992) Distribution of substance P-immunoreactive elements in the preoptic area and the hypothalamus of the rat. J. Comp. Neurol. 316, 287–313.

    PubMed  CAS  Google Scholar 

  40. Yamada K., Emson P., and Hokfelt T. (1996) Immunohistochemical mapping of nitric oxide synthase in the rat hypothalamus and colocalization with neuropeptides. J. Chem. Neuroanat. 10, 295–316.

    PubMed  CAS  Google Scholar 

  41. Sims K. B., Hoffman D. L., Said S. I., and Zimmerman E. A. (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res. 186, 165–183.

    PubMed  CAS  Google Scholar 

  42. Abrahamson E. E., Leak R. K., and Moore R. Y. (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440.

    PubMed  CAS  Google Scholar 

  43. Bayer L., Mairet-Coello G., Risold P. Y., and Griffond B. (2002) Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons. Regul. Pept. 104, 33–39.

    PubMed  CAS  Google Scholar 

  44. Reti I. M., Reddy R., Worley P. F., and Baraban J. M. (2002) Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J. Neurochem. 82, 1561–1565.

    PubMed  CAS  Google Scholar 

  45. Brown R. E., Sergeeva O. A., Eriksson K. S., and Haas H. L. (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine, and noradrenaline). J. Neurosci. 22, 8850–8859.

    PubMed  CAS  Google Scholar 

  46. Hagan J. J., Leslie R. A., Patel S., Evans M. L., Wattam T. A., Holmes S., et al. (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA 96, 10,911–10,916.

    CAS  Google Scholar 

  47. Bayer L., Eggermann E., Serafin M., Saint-Mleux B., Machard D., Jones B., and Muhlethaler M. (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur. J. Neurosci. 14, 1571–1575.

    PubMed  CAS  Google Scholar 

  48. Eggermann E., Serafin M., Bayer L., Machard D., Saint-Mleux B., Jones B. E., and Muhlethaler M. (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177–181.

    PubMed  CAS  Google Scholar 

  49. Takahashi K., Koyama Y., Kayama Y., and Yamamoto M. (2002) Effects of orexin on the laterodorsal tegmental neurones. Psychiatry Clin. Neurosci. 56, 335–336.

    PubMed  CAS  Google Scholar 

  50. Bayer L., Eggermann E., Saint-Mleux B., Machard D., Jones B. E., Muhlethaler M., and Serafin M. (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J. Neurosci. 22, 7835–7839.

    PubMed  CAS  Google Scholar 

  51. Korotkova T. M., Sergeeva O. A., Eriksson K. S., Haas H. L., and Brown R. E. (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci. 23, 7–11.

    PubMed  CAS  Google Scholar 

  52. Li Y., Gao X. B., Sakurai T., and van den Pol A. N. (2002) Hypocretin/Orexin Excites Hypocretin Neurons via a Local Glutamate Neuron-A Potential Mechanism for Orchestrating the Hypothalamic Arousal System. Neuron 36, 1169–1181.

    PubMed  CAS  Google Scholar 

  53. Alam M. N., Gong H., Alam T., Jaganath R., McGinty D., and Szymusiak R. (2002) Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J. Physiol. 538, 619–631.

    PubMed  CAS  Google Scholar 

  54. Koyama Y., Kodama T., Takahashi K., Okai K., and Kayama Y. (2002) Firing properties of neurones in the laterodorsal hypothalamic area during sleep and wakefulness. Psychiatry Clin. Neurosci. 56, 339–340.

    PubMed  Google Scholar 

  55. Methippara M. M., Alam M. N., Szymusiak R., and McGinty D. (2003) Preoptic area warming inhibits wake-active neurons in the perifornical lateral hypothalamus. Brain Res. 960, 165–173.

    PubMed  CAS  Google Scholar 

  56. Steininger T. L., Alam M. N., Gong H., Szymusiak R., and McGinty D. (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res. 840, 138–147.

    PubMed  CAS  Google Scholar 

  57. Kiyashchenko L. I., Mileykovskiy B. Y., Maidment N., Lam H. A., Wu M. F., John J., et al. (2002) Release of hypocretin (orexin) during waking and sleep states. J. Neurosci. 22, 5282–5286.

    PubMed  CAS  Google Scholar 

  58. Tyler-McMahon B. M., Boules M., and Richelson E. (2000) Neurotensin: peptide for the next millennium. Regul. Pept. 93, 125–136.

    PubMed  CAS  Google Scholar 

  59. Kalivas P. W., Burgess S. K., Nemeroff C. B., and Prange A. J., Jr. (1983) Behavioral and neurochemical effects of neurotensin microinjection into the ventral tegmental area of the rat. Neuroscience 8, 495–505.

    PubMed  CAS  Google Scholar 

  60. Zahm D. S., Grosu S., Williams E. A., Qin S., and Berod A. (2001) Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: retrograde labeling and in situ hybridization combined. Neuroscience 104, 841–851.

    PubMed  CAS  Google Scholar 

  61. Morin A. J. and Beaudet A. (1998) Origin of the neurotensinergic innervation of the rat basal forebrain studied by retrograde transport of cholera toxin. J. Comp. Neurol. 391, 30–41.

    PubMed  CAS  Google Scholar 

  62. Cape E. G., Manns I. D., Alonso A., Beaudet A., and Jones B. E. (2000) Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J. Neurosci. 20, 8452–8461.

    PubMed  CAS  Google Scholar 

  63. Jolas T. and Aghajanian G. K. (1997) Neurotensin and the serotonergic system. Prog. Neurobiol. 52, 455–468.

    PubMed  CAS  Google Scholar 

  64. Petrov T., Jhamandas J. H., and Krukoff T. L. (1992) Characterization of peptidergic efferents from the lateral parabrachial nucleus to identified neurons in the rat dorsal raphe nucleus. J. Chem. Neuroanat. 5, 367–373.

    PubMed  CAS  Google Scholar 

  65. Drolet G. and Rivest S. (2001) Corticotropin-releasing hormone and its receptors; an evaluation at the transcription level in vivo. Peptides 22, 761–767.

    PubMed  CAS  Google Scholar 

  66. Chang F. C. and Opp M. R. (2001) Corticotropin-releasing hormone (CRH) as a regulator of waking. Neurosci. Biobehav. Rev. 25, 445–453.

    PubMed  CAS  Google Scholar 

  67. Russell S. H., Small C. J., Dakin C. L., Abbott C. R., Morgan D. G., Ghatei M. A., and Bloom S. R. (2001) The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. J. Neuroendocrinol. 13, 561–566.

    PubMed  CAS  Google Scholar 

  68. Al Barazanji K. A., Wilson S., Baker J., Jessop D. S., and Harbuz M. S. (2001) Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats. J. Neuroendocrinol. 13, 421–424.

    PubMed  CAS  Google Scholar 

  69. Brischoux F., Cvetkovic V., Griffond B., Fellmann D., and Risold P. Y. (2002) Time of genesis determines projection and neurokinin-3 expression patterns of diencephalic neurons containing melanin-concentrating hormone. Eur. J. Neurosci. 16, 1672–1680.

    PubMed  CAS  Google Scholar 

  70. Cvetkovic V., Brischoux F., Griffond B., Bernard G., Jacquemard C., Fellmann D., and Risold P. Y. (2003) Evidence of melanin-concentrating hormone-containing neurons supplying both cortical and neuroendocrine projections. Neuroscience 116, 31–35.

    PubMed  CAS  Google Scholar 

  71. Cronin S. J., Mochizuki T., Papadopoulou M., Trombly D., Maratos-Flier E., and Scammell T. E. (2000) Sleep/wake behavior in mch overexpressing mice. Sleep 25, A168-A169.

    Google Scholar 

  72. Gomori A., Ishihara A., Ito M., Mashiko S., Matsushita H., Yumoto M., et al. (2002) Chronic intracerebroventricular infusion of MCH causes obesity in mice. Am. J. Physiol. Endocrinol. Metab. 284, E583-E588.

    PubMed  Google Scholar 

  73. Wurts S. W., Nishino S., Ling N., Maki R., Edgar D. M., and Minot E. (2001) Differential effects of hypocretin-1, melanin-concentrating hormone and cocaine- and amphetamine-regulated transcript on sleep in rats. Sleep 24, A154-A155.

    Google Scholar 

  74. Nahon J. L. (1994) The melanin-concentrating hormone: from the peptide to the gene. Crit. Rev. Neurobiol. 8, 221–262.

    PubMed  CAS  Google Scholar 

  75. Steiger A., Guldner J., Knisatschek H., Rothe B., Lauer C., and Holsboer F. (1991) Effects of an ACTH/MSH(4–9) analog (HOE 427) on the sleep EEG and nocturnal hormonal secretion in humans. Peptides 12, 1007–1010.

    PubMed  CAS  Google Scholar 

  76. Shimada M., Tritos N. A., Lowell B. B., Flier J. S., and Maratos-Flier E. (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670–674.

    PubMed  CAS  Google Scholar 

  77. Plotsky P. M. and Vale W. (1985) Patterns of growth hormone-releasing factor and somatostatin secretion into the hypophysial-portal circulation of the rat. Science 230, 461–463.

    PubMed  CAS  Google Scholar 

  78. Yoshizato H., Fujikawa T., Soya H., Tanaka M., and Nakashima K. (1998) The growth hormone (GH) gene is expressed in the lateral hypothalamus: enhancement by GH_releasing hormone and repression by restraint stress. Endocrinology 139, 2545–2551.

    PubMed  CAS  Google Scholar 

  79. Zhang J., Obal F., Jr., Zheng T., Fang J., Taishi P., and Krueger J. M. (1999) Intrapreoptic microinjection of GHRH or its antagonist alters sleep in rats. J. Neurosci. 19, 2187–2194.

    PubMed  CAS  Google Scholar 

  80. Gardi J., Obal F., Jr., Fang J., Zhang J., and Krueger J. M. (1999) Diurnal variations and sleep deprivation-induced changes in rat hypothalamic GHRH and somatostatin contents. Am. J. Physiol. 277, R1339-R1344.

    PubMed  CAS  Google Scholar 

  81. Obal F., Jr., Alfoldi P., Cady A. B., Johannsen L., Sary G., and Krueger J. M. (1988) Growth hormone-releasing factor enhances sleep in rats and rabbits. Am. J. Physiol. 255, R310-R316.

    PubMed  CAS  Google Scholar 

  82. Marshall L., Derad I., Strasburger C. J., Fehm H. L., and Born J. (1999) A determinant factor in the efficacy of GHRH administration in promoting sleep: high peak concentration versus recurrent increasing slopes. Psychoneuroendocrinology 24, 363–370.

    PubMed  CAS  Google Scholar 

  83. Drucker-Colin R. R., Spanis C. W., Hunyadi J., Sassin J. F., and McGaugh J. L. (1975) Growth hormone effects on sleep and wakefulness in the rat. Neuroendocrinology 18, 1–8.

    PubMed  CAS  Google Scholar 

  84. Obal F., Jr., Fang J., Taishi P., Kacsoh B., Gardi J., and Krueger J. M. (2001) Deficiency of growth hormone-releasing hormone signaling is associated with sleep alterations in the dwarf rat. J. Neurosci. 21, 2912–2918.

    PubMed  CAS  Google Scholar 

  85. Hajdu I., Obal F., Jr., Fang J., Krueger J. M., and Rollo C. D. (2002) Sleep of transgenic mice producing excess rat growth hormone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R70-R76.

    PubMed  CAS  Google Scholar 

  86. Overeem S., Kok S. W., Lammers G. J., Vein A. A., Frolich M., Meinders A. E., et al. (2002) The somatotropic axis in hypocretin-deficient narcoleptic humans: altered circadian distribution of GH secretory events. Am. J. Physiol. Endocrinol. Metab. 284, E641-E647.

    PubMed  Google Scholar 

  87. Steiger A. and Holsboer F. (1997) Neuropeptides and human sleep. Sleep 20, 1038–1052.

    PubMed  CAS  Google Scholar 

  88. Opp M. R. (1995) Corticotropin-releasing hormone involvement in stressor-induced alterations in sleep and in the regulation of waking. Adv. Neuroimmunol. 5, 127–143.

    PubMed  CAS  Google Scholar 

  89. Holsboer F., von Bardeleben U., and Steiger A. (1988) Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology 48, 32–38.

    PubMed  CAS  Google Scholar 

  90. Kerkhofs M., Van Cauter E., Van Onderbergen A., Caufriez A., Thorner M. O., and Copinschi G. (1993) Sleep-promoting effects of growth hormone-releasing hormone in normal men. Am. J. Physiol. 264, E594-E598.

    PubMed  CAS  Google Scholar 

  91. Heilig M. and Widerlov E. (1990) Neuropeptide Y: an overview of central distribution, functional aspects, and possible involvement in neuropsychiatric illnesses. Acta Psychiatr. Scand. 82, 95–114.

    PubMed  CAS  Google Scholar 

  92. Leger L., Charnay Y., Danger J. M., Vaudry H., Pelletier G., Dubois P. M., and Jouvet M. (1987) Mapping of neuropeptide Y-like immunoreactivity in the feline hypothalamus and hypophysis. J. Comp. Neurol. 255, 283–292.

    PubMed  CAS  Google Scholar 

  93. Elias C. F., Saper C. B., Maratos-Flier E., Tritos N. A., Lee C., Kelly J., et al. (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442–459.

    PubMed  CAS  Google Scholar 

  94. Fuxe K., Agnati L. F., Harfstrand A., Zini I., Tatemoto K., Pich E. M., et al. (1983) Central administration of neuropeptide Y induces hypotension bradypnea and EEG synchronization in the rat. Acta Physiol. Scand. 118, 189–192.

    PubMed  CAS  Google Scholar 

  95. Antonijevic I. A., Murck H., Bohlhalter S., Frieboes R. M., Holsboer F., and Steiger A. (2000) Neuropeptide Y promotes sleep and inhibits ACTH and cortisol release in young men. Neuropharmacology 39, 1474–1481.

    PubMed  CAS  Google Scholar 

  96. Naveilhan P., Canals J. M., Valjakka A., Vartiainen J., Arenas E., and Ernfors P. (2001) Neuropeptide Y alters sedation through a hypothalamic Y1-mediated mechanism. Eur. J. Neurosci. 13, 2241–2246.

    PubMed  CAS  Google Scholar 

  97. Naveilhan P., Canals J. M., Arenas E., and Ernfors P. (2001) Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation. J. Neurochem. 78, 1201–1207.

    PubMed  CAS  Google Scholar 

  98. Graf M. V. and Kastin A. J. (1986) Delta-sleep-inducing peptide (DSIP): an update. Peptides 7, 1165–1187.

    PubMed  CAS  Google Scholar 

  99. Charnay Y., Bouras C., Vallet P. G., Golaz J., Guntern R., and Constantinidis J. (1989) Immunohistochemical distribution of delta sleep inducing peptide in the rabbit brain and hypophysis. Neuroendocrinology 49, 169–175.

    PubMed  CAS  Google Scholar 

  100. Pollard B. J. and Pomfrett C. J. (2001) Delta sleep-inducing peptide. Eur. J. Anaesthesiol. 18, 419–422.

    PubMed  CAS  Google Scholar 

  101. Umriukhin P. E. (2002) Delta sleep-inducing Peptide blocks excitatory effects of glutamate on rat brain neurons. Bull. Exp. Biol. Med. 134, 5–7.

    PubMed  CAS  Google Scholar 

  102. Salieva R. M., Yanovskii K., Ratsak R., Trofimova Y., Oeme P., Sudakov K. V., and Yumatov E. A. (1992) Delta sleep-inducing peptide as a factor increasing the content of substance P in the hypothalamus and the resistance of rats to emotional stress. Neurosci. Behav. Physiol. 22, 275–279.

    PubMed  CAS  Google Scholar 

  103. Strittmatter M., Isenberg E., Grauer M. T., Hamann G., and Schimrigk K. (1996) CSF substance P somatostatin and monoaminergic transmitter metabolites in patients with narcolepsy. Neurosci. Lett. 218, 99–102.

    PubMed  CAS  Google Scholar 

  104. Gislason T., Hedner J., Terenius L., Bisette G., and Nemeroff C. B. (1992) Substance P, thyrotropin-releasing hormone, and monoamine metabolites in cerebrospinal fluid in sleep apnea patients. Am. Rev. Respir. Dis. 146, 784–786.

    PubMed  CAS  Google Scholar 

  105. Wachtel E., Koplik E., Kolometsewa I. A., Balzer H. U., Hecht K., Oehme P., and Ivanow V. T. (1987) Comparison of the effects of DSIP and SP 1–11 on stress-induced chronic sleep disorders in rats. Pharmazie 42, 188–190.

    PubMed  CAS  Google Scholar 

  106. Cutler D. J., Morris R., Evans M. L., Leslie R. A., Arch J. R., and Williams G. (2001) Orexin-A immunoreactive neurons in the rat hypothalamus do not contain neuronal nitric oxide synthase (nNOS). Peptides 22, 123–128.

    PubMed  CAS  Google Scholar 

  107. Kapas L. and Krueger J. M. (1996) Nitric oxide donors SIN-1 and SNAP promote nonrapid-eye-movement sleep in rats. Brain Res. Bull. 41, 293–298.

    PubMed  CAS  Google Scholar 

  108. Burlet S., Leger L., and Cespuglio R. (1999) Nitric oxide and sleep in the rat: a puzzling relationship. Neuroscience 92, 627–639.

    PubMed  CAS  Google Scholar 

  109. Williams J. A., Vincent S. R., and Reiner P. B. (1997) Nitric oxide production in rat thalamus changes with behavioral state, local depolarization, and brainstem stimulation. J. Neurosci. 17, 420–427.

    PubMed  CAS  Google Scholar 

  110. Burlet S. and Cespuglio R. (1997) Voltammetric detection of nitric oxide (NO) in the rat brain: its variations throughout the sleep-wake cycle. Neurosci. Lett. 226, 131–135.

    PubMed  CAS  Google Scholar 

  111. Obal F., Jr., Sary G., Alfoldi P., Rubicsek G., and Obal F. (1986) Vasoactive intestinal polypeptide promotes sleep without effects on brain temperature in rats at night. Neurosci. Lett. 64, 236–240.

    PubMed  CAS  Google Scholar 

  112. Prospero-Garcia O., Morales M., Arankowsky-Sandoval G., and Drucker-Colin R. (1986) Vasoactive intestinal polypeptide (VIP) and cerebrospinal fluid (CSF) of sleep-deprived cats restores REM sleep in insomniac recipients. Brain Res. 385, 169–173.

    PubMed  CAS  Google Scholar 

  113. Obal F., Jr., Opp M., Cady A. B., Johannsen L., and Krueger J. M. (1989) Prolactin, vasoactive intestinal peptide, and peptide histidine methionine elicit selective increases in REM sleep in rabbits. Brain Res. 490, 292–300.

    PubMed  CAS  Google Scholar 

  114. Mirmiran M., Kruisbrink J., Bos N. P., Van der W. D., and Boer G. J. (1988) Decrease of rapid-eye-movement sleep in the light by intraventricular application of a VIP-antagonist in the rat. Brain Res. 458, 192–194.

    PubMed  CAS  Google Scholar 

  115. el Kafi B., Cespuglio R., Leger L., Marinesco S., and Jouvet M. (1994) Is the nucleus raphe dorsalis a target for the peptides possessing hypnogenic properties? Brain Res. 637, 211–221.

    PubMed  CAS  Google Scholar 

  116. Bourgin P., Lebrand C., Escourrou P., Gaultier C., Franc B., Hamon M., and Adrien J. (1997) Vasoactive intestinal polypeptide microinjections into the oral pontine tegmentum enhance rapid eye movement sleep in the rat. Neuroscience 77, 351–360.

    PubMed  CAS  Google Scholar 

  117. Kuenzel W. J. and Blahser S. (1994) Vasoactive intestinal polypeptide (VIP)-containing neurons: distribution throughout the brain of the chick (Gallus domesticus) with focus upon the lateral septal organ. Cell Tissue Res. 275, 91–107.

    PubMed  CAS  Google Scholar 

  118. Laemle L. K. and Cotter J. R. (1988) Immunocytochemical localization of vasoactive intestinal polypeptide (VIP) in the brain of the little brown bat (Myotis lucifugus). J. Neurocytol. 17, 117–129.

    PubMed  CAS  Google Scholar 

  119. Obata-Tsuto H. L., Okamura H., Tsuto T., Terubayashi H., Fukui K., Yanaihara N., and Ibata Y. (1983) Distribution of the VIP-like immunoreactive neurons in the cat central nervous system. Brain Res. Bull. 10, 653–660.

    PubMed  CAS  Google Scholar 

  120. Baek S. Y., Yamano M., Shiotani Y., and Tohyama M. (1988) Distribution and origin of vasoactive intestinal polypeptide-like immunoreactive fibers in the central amygdaloid nucleus of the rat: an immunocytochemical analysis. Peptides 9, 661–668.

    PubMed  CAS  Google Scholar 

  121. Goffin V., Binart N., Touraine P., and Kelly P. A. (2002) Prolactin: the new biology of an old hormone. Annu. Rev. Physiol. 64, 47–67.

    PubMed  CAS  Google Scholar 

  122. Paut-Pagano L., Roky R., Valatx J. L., Kitahama K., and Jouvet M. (1993) Anatomical distribution of prolactin-like immunoreactivity in the rat brain. Neuroendocrinology 58, 682–695.

    PubMed  CAS  Google Scholar 

  123. Risold P. Y., Griffond B., Kilduff T. S., Sutcliffe J. G., and Fellmann D. (1999) Preprohypocretin (orexin) and prolactin-like immunoreactivity are coexpressed by neurons of the rat lateral hypothalamic area. Neurosci. Lett. 259, 153–156.

    PubMed  CAS  Google Scholar 

  124. Roky R., Paut-Pagano L., Goffin V., Kitahama K., Valatx J. L., Kelly P. A., and Jouvet M. (1996) Distribution of prolactin receptors in the rat forebrain. Immunohistochemical study. Neuroendocrinology 63, 422–429.

    PubMed  CAS  Google Scholar 

  125. Roky R., Obal F., Jr., Valatx J. L., Bredow S., Fang J., Pagano L. P., and Krueger J. M. (1995) Prolactin and rapid eye movement sleep regulation. Sleep 18, 536–542.

    PubMed  CAS  Google Scholar 

  126. Roky R., Valatx J. L., and Jouvet M. (1993) Effect of prolactin on the sleep-wake cycle in the rat. Neurosci. Lett. 156, 117–120.

    PubMed  CAS  Google Scholar 

  127. Roky R., Valatx J. L., Paut-Pagano L., and Jouvet M. (1994) Hypothalamic injection of prolactin or its antibody alters the rat sleep-wake cycle. Physiol. Behav. 55, 1015–1019.

    PubMed  CAS  Google Scholar 

  128. Meldrum B. S. (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S-1015S.

    PubMed  CAS  Google Scholar 

  129. Ziegler D. R., Cullinan W. E., and Herman J. P. (2002) Distribution of vesicular glutamate tansporter mRNA in rat hypothalamus. J. Comp. Neurol. 448, 217–229.

    PubMed  CAS  Google Scholar 

  130. Lancel M. (1999) Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22, 33–42.

    PubMed  CAS  Google Scholar 

  131. Elias C. F., Lee C. E., Kelly J. F., Ahima R. S., Kuhar M., Saper C. B., and Elmquist J. K. (2001) Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 432, 1–19.

    PubMed  CAS  Google Scholar 

  132. Gao X. B. and van den Pol A. N. (2001) GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol. 85, 425–434.

    PubMed  CAS  Google Scholar 

  133. Jo Y. H. and Role L. W. (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J. Neurosci. 22, 4794–4804.

    PubMed  CAS  Google Scholar 

  134. Jo Y. H. and Role L. W. (2002) Cholinergic modulation of purinergic and GABAergic cotransmission at in vitro hypothalamic synapses. J. Neurophysiol. 88, 2501–2508.

    PubMed  CAS  Google Scholar 

  135. Ford B., Holmes C. J., Mainville L., and Jones B. E. (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J. Comp. Neurol. 363, 177–196.

    PubMed  CAS  Google Scholar 

  136. Brown R. E., Stevens D. R., and Haas H. L. (2001) The physiology of brain histamine. Prog. Neurobiol. 63, 637–672.

    PubMed  CAS  Google Scholar 

  137. Parmentier R., Ohtsu H., Djebbara-Hannas Z., Valatx J. L., Watanabe T., and Lin J. S. (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci. 22, 7695–7711.

    PubMed  CAS  Google Scholar 

  138. Huang Z. L., Qu W. M., Li W. D., Mochizuki T., Eguchi N., Watanabe T., et al. (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl. Acad. Sci. USA 98, 9965–9970.

    PubMed  CAS  Google Scholar 

  139. Haas H. and Panula P. (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci. 4, 121–130.

    PubMed  CAS  Google Scholar 

  140. Saper C. B., Swanson L. W., and Cowan W. M. (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J. Comp. Neurol. 183, 689–706.

    PubMed  CAS  Google Scholar 

  141. Saper C. B. (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J. Comp. Neurol. 237, 21–46.

    PubMed  CAS  Google Scholar 

  142. Chou T. C., Bjorkum A. A., Gaus S. E., Lu J., Scammell T. E., and Saper C. B. (2002) Afferents to the ventrolateral preoptic nucleus. J. Neurosci. 22, 977–990.

    PubMed  CAS  Google Scholar 

  143. Sherin J. E., Shiromani P. J., McCarley R. W., and Saper C. B. (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219.

    PubMed  CAS  Google Scholar 

  144. Jones B. E. (1993) The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog. Brain Res. 98, 61–71.

    PubMed  CAS  Google Scholar 

  145. Gritti I., Mainville L., and Jones B. E. (1994) Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. J. Comp. Neurol. 339, 251–268.

    PubMed  CAS  Google Scholar 

  146. Sim L. J. and Joseph S. A. (1992) Efferent projections of the nucleus raphe magnus. Brain Res. Bull. 28, 679–682.

    PubMed  CAS  Google Scholar 

  147. Sakai K., Yoshimoto Y., Luppi P. H., Fort P., el Mansari M., Salvert D., and Jouvet M. (1990) Lower brainstem afferents to the cat posterior hypothalamus: a double-labeling study. Brain Res. Bull. 24, 437–455.

    PubMed  CAS  Google Scholar 

  148. Inagaki N., Yamatodani A., Ando-Yamamoto M., Tohyama M., Watanabe T., and Wada H. (1988) Organization of histaminergic fibers in the rat brain. J. Comp. Neurol. 273, 283–300.

    PubMed  CAS  Google Scholar 

  149. McGinty D. and Szymusiak R. (1990) Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep. Trends Neurosci. 13, 480–487.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gerashchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerashchenko, D., Shiromani, P.J. Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness. Mol Neurobiol 29, 41–59 (2004). https://doi.org/10.1385/MN:29:1:41

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:1:41

Index Entries

Navigation