Skip to main content
Log in

The mechanism of axon growth

What we have learned from the cell adhesion molecule L1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cell adhesion molecules (CAMs) are not just an inert glue that mediates static cell-cell and cell-extracellular matrix (ECM) adhesion; instead, their adhesivity is dynamically controlled to enable a cell to migrate through complex environmental situations. Furthermore, cell migration requires distinct levels of CAM adhesivity in various subcellular regions. Recent studies on L1, a CAM in the immunoglobulin superfamily, demonstrate that cell adhesion can be spatially regulated by the polarized internalization and recycling of CAMs. This article examines the molecular mechanism of axon growth, with a particular focus on the role of L1 trafficking in the polarized adhesion and migration of neuronal growth cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gordon-Weeks P.R. (2000) Neuronal Growth Cones Cambridge University Press, Cambridge, UK.

    Google Scholar 

  2. Rosenthal A., Jouet M., and Kenwrick S. (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus [published erratum appears in Nat. Genet. 1993 Mar;3(3):273]. Nat. Genet. 2, 107–112.

    Article  PubMed  CAS  Google Scholar 

  3. Van Camp G., Vits L., Coucke P., Lyonnet S., Schrander-Stumpel C., Darby J., et al. (1993) A duplication in the L1CAM gene associated with X-linked hydrocephalus. Nat. Genet. 4, 421–425.

    Article  PubMed  CAS  Google Scholar 

  4. Kamiguchi H., Hlavin M. L., Yamasaki M., and Lemmon V. (1998) Adhesion molecules and inherited diseases of the human nervous system. Annu. Rev. Neurosci. 21, 97–125.

    Article  PubMed  CAS  Google Scholar 

  5. Dahme M., Bartsch U., Martini R., Anliker B., Schachner M., and Mantei N. (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat. Genet. 17, 346–349.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen N.R., Taylor J.S., Scott L.B., Guillery R.W., Soriano P., and Furley A.J. (1998) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr. Biol. 8, 26–33.

    Article  PubMed  CAS  Google Scholar 

  7. Fransen E., D’Hooge R., Van Camp G., Verhoye M., Sijbers J., Reyniers E., et al. (1998) L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum. Mol. Genet. 7, 999–1009.

    Article  PubMed  CAS  Google Scholar 

  8. Demyanenko G.P., Tsai A.Y., and Maness P.F. (1999) Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J. Neurosci. 19, 4907–4920.

    PubMed  CAS  Google Scholar 

  9. Demyanenko G.P. and Maness P.F. (2003) The L1 cell adhesion molecule is essential for topographic mapping of retinal axons. J. Neurosci. 23, 530–538.

    PubMed  CAS  Google Scholar 

  10. Grumet M. and Edelman G.M. (1988) Neuronglia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms. J. Cell Biol. 106, 487–503.

    Article  PubMed  CAS  Google Scholar 

  11. Lemmon V., Farr K.L., and Lagenaur C. (1989) L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2, 1597–1603.

    Article  PubMed  CAS  Google Scholar 

  12. Yip P.M., Zhao X., Montgomery A.M., and Siu C.H. (1998) The Arg-Gly-Asp motif in the cell adhesion molecule L1 promotes neurite outgrowth via interaction with the αvβ3 integrin. Mol. Biol. Cell 9, 277–290.

    PubMed  CAS  Google Scholar 

  13. Buchstaller A., Kunz S., Berger P., Kunz B., Ziegler U., Rader C., et al. (1996) Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion. J. Cell Biol. 135, 1593–1607.

    Article  PubMed  CAS  Google Scholar 

  14. Perrin F.E., Rathjen F.G., and Stoeckli E.T. (2001) Distinct subpopulations of sensory afferents require F11 or axonin-1 for growth to their target layers within the spinal cord of the chick. Neuron 30, 707–723.

    Article  PubMed  CAS  Google Scholar 

  15. Castellani V., De Angelis E., Kenwrick S., and Rougon G. (2002) Cis and trans interactions of L1 with neuropilin-1 control axonal responses to semaphorin 3A. EMBO J. 21, 6348–6357.

    Article  PubMed  CAS  Google Scholar 

  16. Liddington R.C. and Ginsberg M.H. (2002) Integrin activation takes shape. J. Cell Biol. 158, 833–839.

    Article  PubMed  CAS  Google Scholar 

  17. Gumbiner B.M. (2000) Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399–404.

    Article  PubMed  CAS  Google Scholar 

  18. Kamiguchi H. and Lemmon V. (2000) IgCAMs: bidirectional signals underlying neurite growth. Curr. Opin. Cell Biol. 12, 598–605.

    Article  PubMed  CAS  Google Scholar 

  19. Bennett V. and Chen L. (2001) Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr. Opin. Cell Biol. 13, 61–67.

    Article  PubMed  CAS  Google Scholar 

  20. Tuvia S., Garver T.D., and Bennett V. (1997) The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation. Proc. Natl. Acad. Sci. USA 94, 12,957–12,962.

    CAS  Google Scholar 

  21. Garver T.D., Ren Q., Tuvia S., and Bennett V. (1997) Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell Biol. 137, 703–714.

    Article  PubMed  CAS  Google Scholar 

  22. Hortsch M., Homer D., Malhotra J.D., Chang S., Frankel J., Jefford G., et al. (1998) Structural requirements for outside-in and inside-out signaling by Drosophila neuroglian, a member of the L1 family of cell adhesion molecules. J. Cell Biol. 142, 251–261.

    Article  PubMed  CAS  Google Scholar 

  23. Silletti S., Mei F., Sheppard D., and Montgomery A.M. (2000) Plasmin-sensitive dibasic sequences in the third fibronectin-like domain of L1-cell adhesion molecule (CAM) facilitate homomultimerization and concomitant integrin recruitment. J. Cell Biol. 149, 1485–1502.

    Article  PubMed  CAS  Google Scholar 

  24. Hall H., Bozic D., Fauser C., and Engel J. (2000) Trimerization of cell adhesion molecule L1 mimics clustered L1 expression on the cell surface: influence on L1-ligand interactions and on promotion of neurite outgrowth. J. Neurochem. 75, 336–346.

    Article  PubMed  CAS  Google Scholar 

  25. Gutwein P., Oleszewski M., Mechtersheimer S., Agmon-Levin N., Krauss K., and Altevogt P. (2000) Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J. Biol. Chem. 275, 15,490–15,497.

    Article  CAS  Google Scholar 

  26. Bell G.I. (1978) Models for the specific adhesion of cells to cells. Science 200, 618–627.

    Article  PubMed  CAS  Google Scholar 

  27. Long K.E., Asou H., Snider M.D., and Lemmon V. (2001) The role of endocytosis in regulating L1-mediated adhesion. J. Biol. Chem. 276, 1285–1290.

    Article  PubMed  CAS  Google Scholar 

  28. Mitchison T.J. and Cramer L.P. (1996) Actin-based cell motility and cell locomotion. Cell 84, 371–379.

    Article  PubMed  CAS  Google Scholar 

  29. Lin C.H. and Forscher P. (1995) Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14, 763–771.

    Article  PubMed  CAS  Google Scholar 

  30. Suter D.M. and Forscher P. (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44, 97–113.

    Article  PubMed  CAS  Google Scholar 

  31. Kamiguchi H. and Lemmon V. (2000) Recycling of the cell adhesion molecule L1 in axonal growth cones. J. Neurosci. 20, 3676–3686.

    PubMed  CAS  Google Scholar 

  32. Lauffenburger D.A. and Horwitz A.F. (1996) Cell migration: a physically integrated molecular process. Cell 84, 359–369.

    Article  PubMed  CAS  Google Scholar 

  33. Kamiguchi H. and Yoshihara F. (2001) The role of endocytic L1 trafficking in polarized adhesion and migration of nerve growth cones. J. Neurosci. 21, 9194–9203.

    PubMed  CAS  Google Scholar 

  34. Takeda Y., Asou H., Murakami Y., Miura M., Kobayashi M., and Uyemura K. (1996) A nonneuronal isoform of cell adhesion molecule L1: tissue-specific expression and functional analysis. J. Neurochem. 66, 2338–2349.

    Article  PubMed  CAS  Google Scholar 

  35. Trowbridge I.S., Collawn J.F., and Hopkins C.R. (1993) Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9, 129–161.

    Article  PubMed  CAS  Google Scholar 

  36. Ohno H., Stewart J., Fournier M.C., Bosshart H., Rhee I., Miyatake S., et al. (1995) Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875.

    Article  PubMed  CAS  Google Scholar 

  37. Kirchhausen T., Bonifacino J.S., and Riezman H. (1997) Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol. 9, 488–495.

    Article  PubMed  CAS  Google Scholar 

  38. Kamiguchi H., Long K.E., Pendergast M., Schaefer A.W., Rapoport I., Kirchhausen T., et al. (1998) The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J. Neurosci. 18, 5311–5321.

    PubMed  CAS  Google Scholar 

  39. Schmid R.S., Pruitt W.M., and Maness P.F. (2000) A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J. Neurosci. 20, 4177–4188.

    PubMed  CAS  Google Scholar 

  40. Hinshaw J.E. (2000) Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519.

    Article  PubMed  CAS  Google Scholar 

  41. Wilde A., Beattie E.C., Lem L., Riethof D.A., Liu S.H., Mobley W.C., et al. (1999) EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96, 677–687.

    Article  PubMed  CAS  Google Scholar 

  42. Ahn S., Maudsley S., Luttrell L.M., Lefkowitz R.J., and Daaka Y. (1999) Src-mediated tyrosine phosphorylation of dynamin is required for β2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J. Biol. Chem. 274, 1185–1188.

    Article  PubMed  CAS  Google Scholar 

  43. Schaefer A.W., Kamei Y., Kamiguchi H., Wong E.V., Rapoport I., Kirchhausen T., et al. (2002) L1 endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1. J. Cell Biol. 157, 1223–1232.

    Article  PubMed  CAS  Google Scholar 

  44. Lisanti M.P., Scherer P.E., Vidugiriene J., Tang Z., Hermanowski-Vosatka A., Tu Y.H., et al. (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J. Cell Biol. 126, 111–126.

    Article  PubMed  CAS  Google Scholar 

  45. Simons K. and Toomre D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39.

    Article  PubMed  CAS  Google Scholar 

  46. Nakai Y. and Kamiguchi H. (2002) Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J. Cell Biol. 159, 1097–1108.

    Article  PubMed  CAS  Google Scholar 

  47. Wong E.V., Schaefer A.W., Landreth G., and Lemmon V. (1996) Casein kinase II phosphorylates the neural cell adhesion molecule L1. J. Neurochem. 66, 779–786.

    Article  PubMed  CAS  Google Scholar 

  48. Wan L., Molloy S.S., Thomas L., Liu G., Xiang Y., Rybak S.L., et al. (1998) PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell 94, 205–216.

    Article  PubMed  CAS  Google Scholar 

  49. Molloy S.S., Thomas L., Kamibayashi C., Mumby M.C., and Thomas G. (1998) Regulation of endosome sorting by a specific PP2A isoform. J. Cell Biol. 142, 1399–1411.

    Article  PubMed  CAS  Google Scholar 

  50. Schmid R.S., Graff R.D., Schaller M.D., Chen S., Schachner M., Hemperly J.J., et al. (1999) NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J. Neurobiol. 38, 542–558.

    Article  PubMed  CAS  Google Scholar 

  51. Schaefer A.W., Kamiguchi H., Wong E.V., Beach C.M., Landreth G., and Lemmon V. (1999) Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J. Biol. Chem. 274, 37,965–37,973.

    CAS  Google Scholar 

  52. Perron J.C. and Bixby J.L. (1999) Distinct neurite outgrowth signaling pathways converge on ERK activation. Mol. Cell Neurosci. 13, 362–378.

    Article  PubMed  CAS  Google Scholar 

  53. Kolkova K., Novitskaya V., Pedersen N., Berezin V., and Bock E. (2000) Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the ras-mitogen-activated protein kinase pathway. J. Neurosci. 20, 2238–2246.

    PubMed  CAS  Google Scholar 

  54. Wong E.V., Schaefer A.W., Landreth G., and Lemmon V. (1996) Involvement of p90rsk in neurite outgrowth mediated by the cell adhesion molecule L1. J. Biol. Chem. 271, 18,217–18,223.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kamiguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiguchi, H. The mechanism of axon growth. Mol Neurobiol 28, 219–227 (2003). https://doi.org/10.1385/MN:28:3:219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:28:3:219

Index Entries

Navigation