Skip to main content
Log in

Characterization of APH-1 mutants with a disrupted transmembrane GxxxG motif

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

APH-1 is one of the four essential components of presenilin (PS)-γ-secretase complexes. There are three major isoforms of APH-1 in humans: APH-1aS, APH-1aL, and APH-1b. To gain insight into the functional role of APH-1 in γ-secretase complexes, we analyzed the relationship between the three APH-1 forms and characterized APH-1 mutants with a disrupted transmembrane GxxxG motif. We found that overexpression of APH-1aS or APH-1b in human cells significantly reduced the levels of endogenous APH-1aL protein. However, this displacement was not observed in PS-deficient cells, suggesting that it is dependent on PS. In transiently transfected cells, the levels of APH-1aL with G122D or L123D mutations were much lower than wild-type APH-1aL. Also, cycloheximide treatment of stable transfectants revealed that the mutant proteins are much less stable than the wild type. Furthermore, coimmunoprecipitation analysis showed that wild-type but not the mutant APH-1aL is incorporated into PS1 complexes, displacing endogenous APH-1aS. These results collectively indicate that the three forms of APH-1 can replace each other in PS complexes and that the transmembrane GxxxG region is essential for the stability of the APH-1 protein as well as the assembly of PS complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Araki W., Yuasa K., Takeda S., Takeda K., Shirotani K., Takahashi K., et al. (2001) Pro-apopototic effect of presenilin 2 (PS2) overexpression is associated with downregulation of Bcl-2 in cultured neurons. J. Neurochem. 79, 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  • Chui D. H., Shirotani K., Tanahashi H., Akiyama H., Ozawa K., Kunishita T., et al. (1998) Both N-terminal and C-terminal fragments of presenilin 1 colocalize with neurofibrillary tangles in neurons and dystrophic neurites of senile plaques in Alzheimer's disease. J. Neurosci. Res. 53, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Citron M., Westaway D., Xia W., Carlson G., Diehl T., Levesque G., et al. (1997) Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat. Med. 3, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Edbauer D., Kaether C., Steiner H., and Haass C. (2004) Co-expression of nicastrin and presenilin rescues a loss of function mutant of APH-1. J. Biol. Chem. 279, 37,311–37,315.

    Article  CAS  Google Scholar 

  • Edbauer D., Winkler E., Regula J. T., Pesold B., Steiner H., and Haass C. (2003) Reconstitution of gamma-secretase activity. Nat. Cell Biol. 5, 486–488.

    Article  PubMed  CAS  Google Scholar 

  • Ephrat L.-L., Wasco W., Poorkaj P., Romano D. M., Oshima J., Pettingell W. H., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977.

    Article  Google Scholar 

  • Fortna R. R., Crystal A. S., Morais V. A., Pijak D. S., Lee V. M., and Doms R. W. (2004) Membrane topology and nicastrin-enhanced endoproteolysis of APH-1, a component of the gamma-secretase complex. J. Biol. Chem. 279, 3685–3693.

    Article  PubMed  CAS  Google Scholar 

  • Francis R., McGrath G., Zhang J., Ruddy D. A., Sym M., Apfeld J., et al. (2002) aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cell 3, 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Goutte C., Tsunozaki M., Hale V. A., and Priess J. R. (2002) APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. U. S. A. 99, 775–779.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y., Chen F., Sanjo N., Kawarai T., Hasegawa H., Duthie M., et al. (2003) APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin nicastrin complexes. J. Biol. Chem. 278, 7374–7380.

    Article  PubMed  CAS  Google Scholar 

  • Herreman A., Serneels L., Annaert W., Collen D., Schoonjans L., and De Strooper B. (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2, 461–462.

    Article  PubMed  CAS  Google Scholar 

  • Hu Y. and Fortini M. E. (2003) Different cofactor activities in gamma-secretase assembly: evidence for a nicastrin-Aph-1 subcomplex. J. Cell Biol. 161, 685–690.

    Article  PubMed  CAS  Google Scholar 

  • Kimberly W. T. and Wolfe M. S. (2003) Identity and function of gamma-secretase. J. Neurosci. Res. 74, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Kimberly W. T., LaVoie M. J., Ostaszewski B. L., Ye W., Wolfe M. S., and Selkoe D. J. (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. U. S. A. 100, 6382–6387.

    Article  PubMed  CAS  Google Scholar 

  • LaVoie M. J., Fraering P. C., Ostaszewski B. L., Ye W., Kimberly W. T., Wolfe M. S., et al. (2003) Assembly of the gamma-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin. J. Biol. Chem. 278, 37,213–37,222.

    CAS  Google Scholar 

  • Lee S. F., Shah S., Li H., Yu C., Han W., and Yu G. (2002) Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J. Biol. Chem. 277, 45,013–45,019.

    CAS  Google Scholar 

  • Lee S. F., Shah S., Yu C., Wigley W. C., Li H., Lim M., et al. (2004) A conserved GXXXG motif in APH-1 is critical for assembly and activity of the gamma-secretase complex. J. Biol. Chem. 279, 4144–4152.

    Article  PubMed  CAS  Google Scholar 

  • Ma G., Li T., Price D. L., and Wong P. C. (2005) APH-1a is the principal mammalian APH-1 isoform present in gamma-secretase complexes during embryonic development. J. Neurosci. 25, 192–198.

    Article  PubMed  CAS  Google Scholar 

  • Morais V. A., Crystal A. S., Pijak D. S., Carlin D., Costa J., Lee V. M., et al. (2003) The transmembrane domain region of nicastrin mediates direct interactions with APH-1 and the gamma-secretase complex. J. Biol. Chem. 278, 43,284–43,291.

    Article  CAS  Google Scholar 

  • Niimura M., Isoo N., Takasugi N., Tsuruoka M., Ui-Tei K., Saigo K., et al. (2005) Aph-1 contributes to the stabilization and trafficking of the gamma-secretase complex through mechanisms involving intermolecular and intramolecular interactions. J. Biol. Chem. 280, 12,967–12,975.

    CAS  Google Scholar 

  • Russ W. P. and Engelman D. M. (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919.

    Article  PubMed  CAS  Google Scholar 

  • Saito S. and Araki W. (2005) Expression profiles of two human APH-1 genes and their roles in the formation of presenilin complexes. Biochem. Biophys. Res. Commun. 327, 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Saito S., Takahasi-Sasaki N., and Araki W. (2005) Identification and characterization of a novel human APH-1b splice variant lacking exon 4. Biochem. Biophys. Res. Commun. 330, 1068–1072.

    Article  PubMed  CAS  Google Scholar 

  • Sebastien S., Hebert S. S., Serneels L., Dejaegere T., Horre K., Dabrowski M., et al. (2004) Coordinated and wide-spread expression of gamma-secretase in vivo: evidence for size and molecular heterogeneity. Neurobiol. Dis. 17, 260–272.

    Article  Google Scholar 

  • Serneels L., Dejaegere T., Craessaerts K., Horre K., Jorissen E., Tousseyn T., et al. (2005) Differential contribution of the three Aph1 genes to gamma-secretase activity in vivo. Proc. Natl. Acad. Sci. U. S. A. 102, 1719–1724.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R., Rogaev E. I., Liang Y., Rogaeva E. A., Levesque G., Ikeda M., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi H., Sai X., Wang H. Q., Maeda Y., Kurono Y., Nishimura M., et al. (2004) PEN-2 enhances gamma-cleavage after presenilin heterodimer formation. J. Neurochem. 90, 1402–1413.

    Article  PubMed  CAS  Google Scholar 

  • Shirotani K., Edbauer D., Kostka M., Steiner H., and Haass C. (2004a) Immature nicastrin stabilizes APH-1 independent of PEN-2 and presenilin: identification of nicastrin mutants that selectively interact with APH-1. J. Neurochem. 89, 1520–1527.

    Article  PubMed  CAS  Google Scholar 

  • Shirotani K., Edbauer D., Prokop S., Haass C., and Steiner H. (2004b) Identification of distinct gamma-secretase complexes with different APH-1 variants. J. Biol. Chem. 279, 41,340–41,345.

    Article  CAS  Google Scholar 

  • Shirotani K., Takahashi K., and Tabira T. (1999) Determination of a cleavage site of presenilin 2 protein in stably transfected SH-SY5Y human neuroblastoma cell lines. Biochem. Biophys. Res. Commun. 240, 728–731.

    Article  Google Scholar 

  • Shirotani K., Takahashi K., Araki W., Maruyama K., and Tabira T. (2000) Mutational analysis of intrinsic regions of presenilin 2 that determine its endoproteolytic cleavage and pathological function. J. Biol. Chem. 275, 3681–3686.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S. S. and St George-Hyslop P. H. (2002) gamma-Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in? Nat. Rev. Neurosci. 3, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Takasugi N., Tomita T., Hayashi I., Tsuruoka M., Niimura M., Takahashi Y., et al. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G., Borchelt D. R., Lee M. K., Slunt H. H., Spitzer L., Kim G., et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Yu G., Nishimura M., Arawaka S., Levitan D., Zhang L., Tandon A., et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 48–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Araki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, W., Saito, S., Takahashi-Sasaki, N. et al. Characterization of APH-1 mutants with a disrupted transmembrane GxxxG motif. J Mol Neurosci 29, 35–43 (2006). https://doi.org/10.1385/JMN:29:1:35

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:29:1:35

Index entries

Navigation