Skip to main content

Assessment of Acute Thermal Nociception in Laboratory Animals

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 99))

Abstract

Models of acute nociception using a thermal stimulus are widely employed as screening methods for nociceptive properties of new drug compounds. In this chapter, detailed descriptions for conducting of two of the most commonly used models; the hot plate test and the “Hargreaves test,” are described. These models are applicable to both rats and mice and have the advantage of allowing repeated and multiple testing using a single animal because the stimulus is transitory and produces no tissue damage. Additionally, a modication of these models using a skin-twitch reflex that is applicable to large laboratory animals such a dogs or sheep is described. Guidance concerning potential confounding variable are discussed, as are tips for reducing variably among testing sessions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Treede, R. D., Meyer, R. A., Raja, S. N., and Campbell, J. N. (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog. Neurobiol. 38, 397–421.

    Article  PubMed  CAS  Google Scholar 

  2. Willis, W. D. and Westlund, K. N. (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14, 2–31.

    Article  PubMed  CAS  Google Scholar 

  3. Tsuruoka, M., Matsui, A., and Matsui, Y. (1988) Quantitative relationship between the stimulus intensity and the response magnitude in the tail flick reflex. Physiol. Behav. 43, 79–83.

    Article  PubMed  CAS  Google Scholar 

  4. Dirig, D. M. and Yaksh, T. L. (1995) Differential right shifts in the dose-response curve for intrathecal morphine and sufentanil as a function of stimulus intensity. Pain 62, 321–328.

    Article  PubMed  CAS  Google Scholar 

  5. Le Bars, D., Gozariu, M., and Cadden, S. W. (2001) Animal models of nociception. Pharmacol. Rev. 53, 597–652.

    PubMed  Google Scholar 

  6. Yaksh TL. Preclinical models of nociception, in Anesthesia: Biologic Foundations (Yaksh, T. L., Lynch III, C., Zapol, W. M., et al., eds.). Lippincott-Raven Publishers, Philadelphia, pp. 685–718.

    Google Scholar 

  7. D’Amour, F. E. and Smith, D. L. (1941) A method for determining loss of pain sensation. J. Phamacol. Exp. Ther. 72, 74–79.

    Google Scholar 

  8. Martin, W. R., Eades, C. G., Fraser, H. F., and Winkler, A. (1964) Use of hindlimb reflexes of the chronic spinal dog for comparing analgesics. J. Pharmacol. Exp. Ther. 144, 8–11.

    PubMed  CAS  Google Scholar 

  9. Janssen, P. A. J., Niemegeers, C. J. E., and Dony, J. G. H. (1963) The inhibitory effect of fentanyl and other morphine like analgesics on the warm water induced tail withdrawal reflex in the rat. Arzneimittelforsch 13, 502–507.

    Google Scholar 

  10. Hargreaves, K., Dubner, R., Brown, F., Flores, C., and Joris, J. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77–88.

    Article  PubMed  CAS  Google Scholar 

  11. Sabbe, M. B., Grafe, M. R., Mjanger, E., et al. (1994) Spinal delivery of sufentanil, alfentanil, and morphine in dogs. Physiologic and toxicologic investigations. Anesthesiology 81, 899–920.

    Article  PubMed  CAS  Google Scholar 

  12. Yaksh, T. L. (ed.) (1999) Spinal Drug Delivery. Elsevier Science, New York, NY.

    Google Scholar 

  13. Defrin, R., Ohry, A., Blumen, N., and Urca, G. (2002) Sensory determinants of thermal pain. Brain 125, 501–510.

    Article  PubMed  Google Scholar 

  14. Dirig, D. M., Isakson, P. C., and Yaksh, T. L. (1998) Effect of COX-1 and COX-2 inhibition on induction and maintenance of carrageenan-evoked thermal hyperalgesia in rats. J. Pharmacol. Exp. Ther. 285, 1031–1037.

    PubMed  CAS  Google Scholar 

  15. Hurley, R. W., Chatterjea, D., {mnRose Feng}, M., et al. (2002) Gabapentin and pregabalin can interact synergistically with naproxen to produce antihyperalgesia. Anesthesiology 97, 1263–1273.

    Google Scholar 

  16. Yaksh, T. L., Hua, X.-Y., Kalcheva, I., et al. (1999) The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc. Natl. Acad. Sci. USA 96, 7680–7686.

    Article  PubMed  CAS  Google Scholar 

  17. Yaksh, T. L. (1999) Spinal systems and pain processing, development of novel analgesic drugs with mechanistically defined models. Trends Pharmacol. Sci. 20, 329–337.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Allen, J.W., Yaksh, T.L. (2004). Assessment of Acute Thermal Nociception in Laboratory Animals. In: Luo, Z.D. (eds) Pain Research. Methods in Molecular Medicine, vol 99. Humana Press. https://doi.org/10.1385/1-59259-770-X:139

Download citation

  • DOI: https://doi.org/10.1385/1-59259-770-X:139

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-103-5

  • Online ISBN: 978-1-59259-770-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics