1932

Abstract

Smooth pursuit eye movements maintain the line of sight on smoothly moving targets. Although often studied as a response to sensory motion, pursuit anticipates changes in motion trajectories, thus reducing harmful consequences due to sensorimotor processing delays. Evidence for predictive pursuit includes () anticipatory smooth eye movements (ASEM) in the direction of expected future target motion that can be evoked by perceptual cues or by memory for recent motion, () pursuit during periods of target occlusion, and () improved accuracy of pursuit with self-generated or biologically realistic target motions. Predictive pursuit has been linked to neural activity in the frontal cortex and in sensory motion areas. As behavioral and neural evidence for predictive pursuit grows and statistically based models augment or replace linear systems approaches, pursuit is being regarded less as a reaction to immediate sensory motion and more as a predictive response, with retinal motion serving as one of a number of contributing cues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014901
2019-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014901.html?itemId=/content/journals/10.1146/annurev-vision-091718-014901&mimeType=html&fmt=ahah

Literature Cited

  1. Adelson EH, Jonides J. 1980. The psychophysics of iconic storage. J. Exp. Psychol. Hum. Percept. Perform. 6:486–93
    [Google Scholar]
  2. Ağaoğlu MN, Sheehy CK, Triuveedhula P, Roorda A, Chung STL 2018. Suboptimal eye movements for seeing fine details. J. Vis. 18:58
    [Google Scholar]
  3. Agyei SB, van der Weel FR, van der Meer AL 2016. Development of visual motion perception for prospective control: brain and behavioral studies in infants. Front. Psychol. 7:100
    [Google Scholar]
  4. Aitkin CD, Santos EM, Kowler E 2013. Anticipatory smooth eye movements in autism spectrum disorder. PLOS ONE 8:e83230
    [Google Scholar]
  5. Aytekin M, Victor JD, Rucci M 2014. The visual input to the retina during natural head-free fixation. J. Neurosci. 34:12701–15
    [Google Scholar]
  6. Badler JB, Heinen SJ. 2006. Anticipatory movement timing using prediction and external cues. J. Neurosci. 26:4519–25
    [Google Scholar]
  7. Badler JB, Lefèvre P, Missal M 2010. Causality attribution biases oculomotor responses. J. Neurosci. 30:10517–25
    [Google Scholar]
  8. Barborica A, Ferrera VP. 2003. Estimating invisible target speed from neuronal activity in monkey frontal eye field. Nat. Neurosci. 6:66–74
    [Google Scholar]
  9. Barnes GR. 2008. Cognitive processes involved in smooth pursuit eye movements. Brain Cogn 68:309–26
    [Google Scholar]
  10. Barnes GR, Asselman PT. 1991. The mechanism of prediction in human smooth pursuit eye movements. J. Physiol. 439:439–61
    [Google Scholar]
  11. Barnes GR, Collins CJ. 2008. Evidence for a link between the extra-retinal component of random-onset pursuit and the anticipatory pursuit of predictable object motion. J. Neurophysiol. 100:1135–46
    [Google Scholar]
  12. Becker W, Fuchs AF. 1985. Prediction in the oculomotor system: smooth pursuit during transient disappearance of a visual target. Exp. Brain Res. 57:562–75
    [Google Scholar]
  13. Bennett SJ, Barnes GR. 2004. Predictive smooth ocular pursuit during the transient disappearance of a visual target. J. Neurophysiol. 92:578–90
    [Google Scholar]
  14. Ben-Simon A, Ben-Shahar O, Vasserman G, Segev R 2012. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish. J. Exp. Biol. 215:4248–54
    [Google Scholar]
  15. Berry MJ 2nd, Brivanlou IH, Jordan TA, Meister M 1999. Anticipation of moving stimuli by the retina. Nature 398:334–38
    [Google Scholar]
  16. Bogadhi AR, Montagnini A, Masson GS 2013. Dynamic interaction between retinal and extraretinal signals in motion integration for smooth pursuit. J. Vis. 13:135
    [Google Scholar]
  17. Boman DK, Hotson JR. 1988. Stimulus conditions that enhance anticipatory slow eye movements. Vis. Res. 28:1157–65
    [Google Scholar]
  18. Boman DK, Hotson JR. 1992. Predictive smooth pursuit eye movements near abrupt changes in motion direction. Vis. Res. 32:675–89
    [Google Scholar]
  19. Borghuis BG, Leonardo A. 2015. The role of motion extrapolation in amphibian prey capture. J. Neurosci. 35:15430–41
    [Google Scholar]
  20. Bosco G, Della Monache S, Lacquaniti F 2012. Catching what we see: manual interception of occluded flyballs. PLOS ONE 7:11e49381
    [Google Scholar]
  21. Brainard DH, Longère P, Delahunt PB, Freeman WT, Kraft JM, Xiao B 2006. Bayesian model of human color constancy. J. Vis. 6:111267–81
    [Google Scholar]
  22. Brenner E, Smeets JB. 2011. Continuous visual control of interception. Hum. Mov. Sci. 30:475–94
    [Google Scholar]
  23. Chen J, Valsecchi M, Gegenfurtner KR 2016a. LRP predicts smooth pursuit eye movement onset during the ocular tracking of self-generated movements. J. Neurophysiol. 116:18–29
    [Google Scholar]
  24. Chen J, Valsecchi M, Gegenfurtner KR 2016b. Role of motor execution in the ocular tracking of self-generated movements. J. Neurophysiol. 116:2586–93
    [Google Scholar]
  25. Chukoskie L, Movshon JA. 2009. Modulation of visual signals in macaque MT and MST neurons during pursuit eye movement. J. Neurophysiol. 102:3225–33
    [Google Scholar]
  26. Churchland MM, Chou IH, Lisberger SG 2003. Evidence for object permanence in the smooth-pursuit eye movements of monkeys. J. Neurophysiol. 90:2205–18
    [Google Scholar]
  27. Collewijn H, Tamminga EP. 1984. Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J. Physiol. 351:217–50
    [Google Scholar]
  28. Collins CJ, Barnes GR. 2009. Predicting the unpredictable: Weighted averaging of past stimulus timing facilitates ocular pursuit of randomly timed stimuli. J. Neurosci. 29:13302–14
    [Google Scholar]
  29. Coppe S, Orban de Xivry JJ, Yuksel D, Ivanoiu A, Lefèvre P 2012. Dramatic impairment of prediction due to frontal lobe degeneration. J. Neurophysiol. 108:2957–66
    [Google Scholar]
  30. Dallos P, Jones R. 1963. Learning behavior of the eye fixation control system. IEEE Trans. Autom. Control 8:218–27
    [Google Scholar]
  31. Darlington TR, Beck JM, Lisberger SG 2018. Neural implementation of Bayesian inference in a sensorimotor behavior. Nat. Neurosci. 21:1442–51
    [Google Scholar]
  32. Darlington TR, Tokiyama S, Lisberger SG 2017. Control of the strength of visual-motor transmission as the mechanism of rapid adaptation of priors for Bayesian inference in smooth pursuit eye movements. J. Neurophysiol. 118:1173–89
    [Google Scholar]
  33. de Hemptinne C, Lefèvre P, Missal M 2006. Influence of cognitive expectation on the initiation of anticipatory and visual pursuit eye movements in the rhesus monkey. J. Neurophysiol. 95:3770–82
    [Google Scholar]
  34. de Hemptinne C, Lefèvre P, Missal M 2008. Neuronal bases of directional expectation and anticipatory pursuit. J. Neurosci. 28:4298–310
    [Google Scholar]
  35. Demasse LU, Perrinet JB, Madelein L, Montagnini A 2018. Reinforcement effects in anticipatory smooth eye movements. J. Vis. 18:1114
    [Google Scholar]
  36. Deravet N, Blohm G, Orban de Xivry J-J, Lefèvre P 2018. Weighted integration of short-term memory and sensory signals in the oculomotor system. J. Vis. 18:516
    [Google Scholar]
  37. de'Sperati C, Viviani P. 1997. The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements. J. Neurosci. 17:3932–45
    [Google Scholar]
  38. Diaz G, Cooper J, Rothkopf C, Hayhoe M 2013. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task. J. Vis. 13:120
    [Google Scholar]
  39. Dickinson MH. 2015. Motor control: how dragonflies catch their prey. Curr. Biol. 25:R232–34
    [Google Scholar]
  40. Dodge R, Travis RC, Fox JJr 1930. Optic nystagmus: III. Characteristics of the slow phase. Arch. Neurol. Psychiatry 24:21–34
    [Google Scholar]
  41. Eggert T, Ladda J, Straube A 2009. Inferring the future target trajectory from visual context: Is visual background structure used for anticipatory smooth pursuit. ? Exp. Brain Res. 196:205–15
    [Google Scholar]
  42. Engel KC, Anderson JH, Soechting JF 1999. Oculomotor tracking in two dimensions. J. Neurophysiol. 81:1597–602
    [Google Scholar]
  43. Engel KC, Anderson JH, Soechting JF 2000. Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. J. Neurophysiol. 84:1149–56
    [Google Scholar]
  44. Epelboim J. 1998. Gaze and retinal-image-stability in two kinds of sequential looking tasks. Vis. Res. 38:3773–84
    [Google Scholar]
  45. Epelboim J, Kowler E. 1993. Slow control with eccentric targets: evidence against a position-corrective model. Vis. Res. 33:361–80
    [Google Scholar]
  46. Ernst MO, Banks MS. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–33
    [Google Scholar]
  47. Feldman J, Singh M. 2001. Bayesian estimation of the shape skeleton. PNAS 103:18014–19
    [Google Scholar]
  48. Ferrera VP. 2015. Smooth pursuit preparation modulates neuronal responses in visual areas MT and MST. J. Neurophysiol. 114:638–49
    [Google Scholar]
  49. Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE 2009. Dynamic reweighting of visual and vestibular cues during self-motion perception. J. Neurosci. 29:15601–12
    [Google Scholar]
  50. Fooken J, Yeo SH, Pai DK, Spering M 2016. Eye movement accuracy determines natural interception strategies. J. Vis. 16:141
    [Google Scholar]
  51. Fukushima J, Akao T, Shichinohe S, Kurkin S, Kaneko CRS, Fukushima K 2011. Neuronal activity in the caudal frontal eye fields of monkeys during memory-based smooth pursuit eye movements: comparison with supplementary eye fields. Cereb. Cortex 21:1910–24
    [Google Scholar]
  52. Fukushima K, Yamanobe T, Shinmei Y, Fukushima J 2002. Predicitive responses of periarcuate pursuit neurons to visual target motion. Exp. Brain Res. 145:104–20
    [Google Scholar]
  53. Gallistel CR, Matzel LD. 2013. The neuroscience of learning: beyond the Hebbian synapse. Annu. Rev. Psychol. 64:169–200
    [Google Scholar]
  54. Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT 1989. Mental rotation of the neuronal population vector. Science 243:4888234–36
    [Google Scholar]
  55. Gottlieb JP, Bruce CJ, MacAvoy MG 1993. Smooth eye movements elicited by microstimulation in the primate frontal eye field. J. Neurophysiol. 69:786–99
    [Google Scholar]
  56. Hall NJ, Yang Y, Lisberger SG 2018. Multiple components in direction learning in smooth pursuit eye movements of monkeys. J. Neurophysiol. 120:2020–35
    [Google Scholar]
  57. Hayhoe MM. 2017. Vision and action. Annu. Rev. Vis. Sci. 3:389–413
    [Google Scholar]
  58. Heinen SJ, Badler JB, Ting W 2005. Timing and velocity randomization similarly affect anticipatory pursuit. J. Vis. 5:6493–503
    [Google Scholar]
  59. Hemmer P, Steyvers M. 2009. A Bayesian account of reconstructive memory. Top. Cogn. Sci. 1:189–202
    [Google Scholar]
  60. Ilg UJ, Schumann S, Thier P 2004. Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron 43:145–51
    [Google Scholar]
  61. Ilg UJ, Thier P. 2003. Visual tracking neurons in primate area MST are activated by smooth-pursuit eye movements of an “imaginary” target. J. Neurophysiol. 90:1489–502
    [Google Scholar]
  62. Ilg UJ, Thier P. 2008. The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain Cogn 68:229–40
    [Google Scholar]
  63. Jarrett CB, Barnes G. 2002. Volitional scaling of anticipatory ocular pursuit velocity using precues. Cogn. Brain Res. 14:383–88
    [Google Scholar]
  64. Johansson RS, Westling G, Bäckström A, Flanagan JR 2001. Eye hand coordination in object manipulation. J. Neurosci. 21:6917–32
    [Google Scholar]
  65. Kao GW, Morrow MJ. 1994. The relationship of anticipatory smooth eye movement to smooth pursuit initiation. Vis. Res. 34:3027–36
    [Google Scholar]
  66. Khoei MA, Masson GS, Perrinet LU 2013. Motion-based prediction explains the role of tracking in motion extrapolation. J. Physiol. 107:409–20
    [Google Scholar]
  67. Knill DC, Kersten D. 2004. Visuomotor sensitivity to visual information about surface orientation. J. Neurophysiol. 91:1350–66
    [Google Scholar]
  68. Ko HK, Poletti M, Rucci M 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13:1549–53
    [Google Scholar]
  69. Kording KP, Wolpert DM. 2004. Bayesian integration in sensorimotor learning. Nature 427:244–47
    [Google Scholar]
  70. Kourtzi Z, Kanwisher N. 2000. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12:48–55
    [Google Scholar]
  71. Kowler E. 1989. Cognitive expectations, not habits, control anticipatory smooth oculomotor pursuit. Vis. Res. 29:1049–57
    [Google Scholar]
  72. Kowler E. 2011. Eye movements: the past 25 years. Vis. Res. 51:1457–83
    [Google Scholar]
  73. Kowler E, Aitkin CD, Ross NM, Santos EM, Zhao M 2014. Davida Teller Award Lecture 2013: the importance of prediction and anticipation in the control of smooth pursuit eye movements. J. Vis. 14:510
    [Google Scholar]
  74. Kowler E, Kolisetty L, Aitkin C, Ross N, Santos E, Shah R 2015. Anticipatory smooth eye movements evoked by motor intentions. J. Vis. 15:121018
    [Google Scholar]
  75. Kowler E, Martins AJ, Pavel M 1984. The effect of expectations on slow oculomotor control—IV. Anticipatory smooth eye movements depend on prior target motions. Vis. Res. 24:197–210
    [Google Scholar]
  76. Kowler E, McKee SP. 1987. Sensitivity of smooth eye movement to small differences in target velocity. Vis. Res. 27:993–1015
    [Google Scholar]
  77. Kowler E, Steinman RM. 1979a. The effect of expectations on slow oculomotor control—I. Periodic target steps. Vis. Res. 19:619–32
    [Google Scholar]
  78. Kowler E, Steinman RM. 1979b. The effect of expectations on slow oculomotor control—II. Single target displacements. Vis. Res. 19:633–46
    [Google Scholar]
  79. Krauzlis RJ. 2004. Recasting the smooth pursuit eye movement system. J. Neurophysiol. 91:591–603
    [Google Scholar]
  80. Krauzlis RJ, Dill N. 2002. Neural correlates of target choice for pursuit and saccades in the primate superior colliculus. Neuron 35:355–63
    [Google Scholar]
  81. Krauzlis RJ, Lisberger SG. 1994. A model of visually-guided smooth pursuit eye movements based on behavioral observations. J. Comput. Neurosci. 1:265–83
    [Google Scholar]
  82. Krekelberg B, van Wezel RJ, Albright TD 2006. Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J. Neurophysiol. 95:255–70
    [Google Scholar]
  83. Kuang X, Poletti M, Victor JD, Rucci M 2012. Temporal encoding of spatial information during active visual fixation. Curr. Biol. 22:510–14
    [Google Scholar]
  84. Kurkin S, Akao T, Shichinohe N, Fukushima J, Fukushima K 2011. Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys. Exp. Brain Res. 214:293–301
    [Google Scholar]
  85. Ladda J, Eggert T, Glasauer S, Straube A 2007. Velocity scaling of cue-induced smooth pursuit acceleration obeys constraints of natural motion. Exp. Brain Res. 182:343–56
    [Google Scholar]
  86. Land MF, McLeod P. 2000. From eye movements to actions: how batsmen hit the ball. Nat. Neurosci. 3:1340–45
    [Google Scholar]
  87. Landelle C, Montagnini A, Madelain L, Danion F 2016. Eye tracking a self-moved target with complex hand-target dynamics. J. Neurophysiol. 116:1859–70
    [Google Scholar]
  88. Lisberger SG. 2010. Visual guidance of smooth-pursuit eye movements: sensation, action and what happens in between. Neuron 66:4477–91
    [Google Scholar]
  89. Lu Z, Li X, Meng M 2016. Encodings of implied motion for animate and inanimate object categories in the two visual pathways. NeuroImage 125:668–80
    [Google Scholar]
  90. Luce RD. 1986. Response Times Oxford, UK: Oxford Univ. Press
  91. Lui LL, Pasternak T. 2011. Representation of comparison signals in cortical area MT during a delayed direction discrimination task. J. Neurophysiol. 106:1260–73
    [Google Scholar]
  92. Lynch JC, Tian J-R. 2006. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog. Brain Res. 151:461–501
    [Google Scholar]
  93. Ma WJ. 2012. Organizing probabilistic models of perception. Trends Cogn. Sci. 16:511–18
    [Google Scholar]
  94. MacAvoy MG, Gottlieb JP, Bruce CJ 1991. Smooth-pursuit eye movement representation in the primate frontal eye field. Cereb. Cortex 1:95–102
    [Google Scholar]
  95. Madelain L, Krauzlis RJ. 2003. Pursuit of the ineffable: perceptual and motor reversals during the tracking of apparent motion. J. Vis. 3:11642–53
    [Google Scholar]
  96. Maloney LT. 2002. Statistical decision theory and biological vision. Perception and the Physical World D Heyer, R Mausfeld 145–89 West Sussex, UK: Wiley
    [Google Scholar]
  97. Maryott J, Noyce A, Sekuler R 2011. Eye movements and imitation learning: intentional disruption of expectation. J. Vis. 11:17
    [Google Scholar]
  98. Masson GS, Stone LS. 2002. From following edges to pursuing objects. J. Neurophysiol. 88:2869–73
    [Google Scholar]
  99. Mather JA, Lackner JR. 1981. The influence of efferent, proprioceptive, and timing factors on the accuracy of eye-hand tracking. Exp. Brain Res. 43:406–12
    [Google Scholar]
  100. Maus GW, Potapchuk E, Watamaniuk SN, Heinen SJ 2015. Different time scales of motion integration for anticipatory smooth pursuit and perceptual adaptation. J. Vis. 15:216
    [Google Scholar]
  101. McBeath MK, Shaffer DM, Kaiser MK 1995. How baseball outfielders determine where to run to catch fly balls. Science 268:569–73
    [Google Scholar]
  102. McKee SP. 1981. A local mechanism for differential velocity detection. Vis. Res. 21:491–500
    [Google Scholar]
  103. Meilinger T, Strickrodt M, Bülthoff HH 2016. Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition 155:77–95
    [Google Scholar]
  104. Melcher D, Morrone CM. 2003. Spatiotopic temporal integration of visual motion across saccadic eye movements. Nat. Neurosci. 6:877–81
    [Google Scholar]
  105. Michotte A. 1963. The Perception of Causality Oxford, UK: Basic Books
  106. Missal M, Heinen SJ. 2001. Facilitation of smooth pursuit initiation by electrical stimulation in the supplementary eye fields. J. Neurophysiol. 86:2413–25
    [Google Scholar]
  107. Missal M, Heinen SJ. 2004. Supplementary eye fields stimulation facilitates anticipatory pursuit. J. Neurophysiol. 92:1257–62
    [Google Scholar]
  108. Montagnini A, Spering M, Masson GS 2006. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation. J. Neurophysiol. 96:3545–50
    [Google Scholar]
  109. Mustari MJ, Ono S. 2013. Neural mechanisms for smooth pursuit eye movements. The New Visual Neurosciences JS Werner, LM Chalupa 849–63 Cambridge, MA: MIT Press
    [Google Scholar]
  110. Newsome WT, Wurtz RH, Komatsu H 1988. Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J. Neurophysiol. 60:604–20
    [Google Scholar]
  111. Ninomiya T, Sawamura H, Inoue K-I, Takada M 2012. Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques. J. Neurosci. 32:6851–58
    [Google Scholar]
  112. Orban de Xivry JJ, Coppe S, Blohm G, Lefèvre P 2013. Kalman filtering naturally accounts for visually guided and predictive smooth pursuit dynamics. J. Neurosci. 33:17301–13
    [Google Scholar]
  113. Orban de Xivry JJ, Missal M, Lefèvre P 2008. A dynamic representation of target motion drives predictive smooth pursuit during target blanking. J. Vis. 8:156
    [Google Scholar]
  114. Pack CC, Born RT. 2001. Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409:1040–42
    [Google Scholar]
  115. Pallus AC, Freedman EG. 2016. Target position relative to the head is essential for predicting head movement during head-free gaze pursuit. Exp. Brain Res. 234:82107–21
    [Google Scholar]
  116. Pavel M. 1990. Predictive control of eye movement. Rev. Oculomot. Res. 4:71–114
    [Google Scholar]
  117. Portron A, Lorenceau J. 2017. Sustained smooth pursuit eye movements with eye-induced reverse-phi motion. J. Vis. 17:15
    [Google Scholar]
  118. Regan D. 2012. Vision and cricket. Ophthalmic Physiol. Opt. 32:257–70
    [Google Scholar]
  119. Robinson DA, Gordon JL, Gordon SE 1986. A model of the smooth pursuit eye movement system. Biol. Cybern. 55:43–47
    [Google Scholar]
  120. Ross NM, Santos EM. 2014. The relative contributions of internal motor cues and external semantic cues to anticipatory smooth pursuit. Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA’14)183–86 New York: ACM
    [Google Scholar]
  121. Rubinstein JF, Kowler E. 2018. The role of implicit perceptual motor costs in the integration of information across graph and text. J. Vis. 18:1316
    [Google Scholar]
  122. Santos EM, Gnang EK, Kowler E 2012. Anticipatory smooth eye movements with random-dot kinematograms. J. Vis. 12:111
    [Google Scholar]
  123. Santos EM, Kowler E. 2017. Anticipatory smooth pursuit eye movements evoked by probabilistic cues. J. Vis. 17:1313
    [Google Scholar]
  124. Schall JD. 2015. Visuomotor functions in the frontal lobe. Annu. Rev. Vis. Sci. 1:469–98
    [Google Scholar]
  125. Schlack A, Albright TD. 2007. Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT. Neuron 53:881–90
    [Google Scholar]
  126. Shenhav A, Musslick S, Leider F, Kool W, Griffiths TL et al. 2017. Toward a rational and mechanistic account of mental effort. Annu. Rev. Neurosci. 40:99–124
    [Google Scholar]
  127. Shichinohe N, Akao T, Kurkin S, Fukushima J, Kaneko CR, Fukushima K 2009. Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements. Neuron 62:717–32
    [Google Scholar]
  128. Soechting JF, Mrotek LA, Flanders M 2005. Smooth pursuit tracking of an abrupt change in target direction: vector superposition of discrete responses. Exp. Brain Res. 160:245–58
    [Google Scholar]
  129. Spering M, Montagnini A. 2011. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review. Vis. Res. 51:836–52
    [Google Scholar]
  130. Spering M, Schütz AC, Braun DI, Gegenfurtner KR 2011. Keep your eyes on the ball: Smooth pursuit eye movements enhance prediction of visual motion. J. Neurophysiol. 105:1756–67
    [Google Scholar]
  131. Sperling G. 1960. The information available in brief visual presentations. Psychol. Monogr. Gen. Appl. 74:1–29
    [Google Scholar]
  132. Steinbach MJ. 1969. Eye tracking of self-moved targets: the role of efference. J. Exp. Psychol. 82:366–76
    [Google Scholar]
  133. Steinbach MJ, Held R. 1968. Eye tracking of observer-generated target movements. Science 161:187–88
    [Google Scholar]
  134. Steinman RM, Collewijn H. 1980. Binocular retinal image motion during active head rotation. Vis. Res. 20:415–29
    [Google Scholar]
  135. Steinman RM, Haddad GM, Skavenski AA, Wyman D 1973. Miniature eye movement. Science 181:810–19
    [Google Scholar]
  136. Steinman RM, Levinson JZ. 1990. The role of eye movement in the detection of contrast and detail. Eye Movements and Their Role in Visual and Cognitive Processes E Kowler 115–212 Amsterdam: Elsevier
    [Google Scholar]
  137. Steinman RM, Menezes W, Herst AN 2006. Handling real forms in real life. Seeing Spatial Form MRM Jenkin, LR Harris 187–212 New York: Oxford Univ. Press
    [Google Scholar]
  138. Stocker AA, Simoncelli EP. 2006. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9:578–85
    [Google Scholar]
  139. Treue S, Maunsell JH. 1996. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–41
    [Google Scholar]
  140. Vercher JL, Gauthier GM. 1992. Oculo-manual coordination control: ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Exp. Brain Res. 90:599–609
    [Google Scholar]
  141. Vercher JL, Quaccia D, Gauthier GM 1995. Oculo-manual coordination control: respective role of visual and non-visual information in ocular tracking of self-moved targets. Exp. Brain Res. 103:311–22
    [Google Scholar]
  142. Viviani P, Stucchi N. 1992. Biological movements look uniform: evidence of motor-perceptual interactions. J. Exp. Psychol. Hum. Percept. Perform. 18:3603–23
    [Google Scholar]
  143. Viviani P, Terzuolo C. 1982. Trajectory determines movement dynamics. Neuroscience 7:2431–37
    [Google Scholar]
  144. Wang J, Kowler E. 2018. Am I going fast enough to enter the traffic circle? Judging the relative velocity of moving objects. J. Vis. 18:10592
    [Google Scholar]
  145. Wardill TJ, Fabian ST, Pettigrew AC, Stavenga DG, Nordström K, Gonzalez-Bellido PT 2017. A novel interception strategy in a miniature robber fly with extreme visual acuity. Curr. Biol. 27:854–59
    [Google Scholar]
  146. Weisberg SM, Newcombe NS. 2016. How do (some) people make a cognitive map? Routes, places, and working memory. J. Exp. Psychol. Learn. Mem. Cogn. 42:768–85
    [Google Scholar]
  147. Weiss Y, Simoncelli EP, Adelson EH 2002. Motion illusions as optimal percepts. Nat. Neurosci. 5:598–604
    [Google Scholar]
  148. Westheimer G. 1954. Eye movement responses to a horizontally moving visual stimulus. AMA Arch. Ophthalmol. 52:932–41
    [Google Scholar]
  149. Wu SW, Delgado MR, Maloney LT 2009. Economic decision-making compared with an equivalent motor task. PNAS 106:6088–93
    [Google Scholar]
  150. Yang SN, Hwang H, Ford J, Heinen S 2010. Supplementary eye field activity reflects a decision rule governing smooth pursuit but not the decision. J. Neurophysiol. 103:2458–69
    [Google Scholar]
  151. Yang Y, Lisberger SG. 2010. Learning on multiple timescales in smooth pursuit eye movements. J. Neurophysiol. 104:2850–62
    [Google Scholar]
  152. Zhao H, Warren WH. 2015. On-line and model-based approaches to the visual control of action. Vis. Res. 110:190–202
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014901
Loading
/content/journals/10.1146/annurev-vision-091718-014901
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error