1932

Abstract

Motion in the visual world provides critical information to guide the behavior of sighted animals. Furthermore, as visual motion estimation requires comparisons of signals across inputs and over time, it represents a paradigmatic and generalizable neural computation. Focusing on the visual system, where an explosion of technological advances has recently accelerated experimental progress, we review our understanding of how, algorithmically and mechanistically, motion signals are first computed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034153
2018-09-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034153.html?itemId=/content/journals/10.1146/annurev-vision-091517-034153&mimeType=html&fmt=ahah

Literature Cited

  1. Adelson EH, Bergen JR 1985. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2:2284–99
    [Google Scholar]
  2. Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A 2015. Functional specialization of neural input elements to the Drosophila ON motion detector. Curr. Biol. 25:172247–53
    [Google Scholar]
  3. Anderson JMM, Giannakis GB 1995. Image motion estimation algorithms using cumulants. IEEE Trans. Image Process. 4:3346–57
    [Google Scholar]
  4. Arenz A, Drews MS, Richter FG, Ammer G, Borst A 2017. The temporal tuning of the Drosophila motion detectors is determined by the dynamics of their input elements. Curr. Biol. 27:7929–44
    [Google Scholar]
  5. Bahl A, Ammer G, Schilling T, Borst A 2013. Object tracking in motion-blind flies. Nat. Neurosci. 16:730–38
    [Google Scholar]
  6. Bahl A, Serbe E, Meier M, Ammer G, Borst A 2015. Neural mechanisms for Drosophila contrast vision. Neuron 88:61240–52
    [Google Scholar]
  7. Barlow HB, Hill RM 1963. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139:3553412–14
    [Google Scholar]
  8. Barlow HB, Levick WR 1965. The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178:3477–504
    [Google Scholar]
  9. Bausenwein B, Fischbach K-F 1992. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res 270:125–35
    [Google Scholar]
  10. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C 2014. Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:427–30
    [Google Scholar]
  11. Bishop LG, Keehn DG, McCann GD 1968. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J. Neurophysiol 31:4509–25
    [Google Scholar]
  12. Borst A, Bahde S 1986. What kind of movement detector is triggering the landing response of the housefly. ? Biol. Cybern. 55:159–69
    [Google Scholar]
  13. Borst A, Egelhaaf M 1987. Temporal modulation of luminance adapts time constant of fly movement detectors. Biol. Cybern. 56:4209–15
    [Google Scholar]
  14. Briggman KL, Helmstaedter M, Denk W 2011. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–88
    [Google Scholar]
  15. Buchner E 1976. Elementary movement detectors in an insect visual system. Biol. Cybern. 24:285–101
    [Google Scholar]
  16. Buchner E 1984. Behavioural analysis of spatial vision in insects. Photoreception and Vision in Invertebrates MA Ali 561–621 Boston, MA: Springer US
    [Google Scholar]
  17. Buchner E, Buchner S, Bülthoff I 1984. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. I. Wildtype. J. Comp. Physiol. 155:4471–83
    [Google Scholar]
  18. Buchner E, Rodrigues V 1983. Autoradiographic localization of [3H]choline uptake in the brain of Drosophila melanogaster. Neurosci. Lett 42:125–31
    [Google Scholar]
  19. Butler K 1973. Predatory behavior in laboratory mice: strain and sex comparisons. J. Comp. Physiol. Psychol. 85:2243–49
    [Google Scholar]
  20. Caussinus E, Kanca O, Affolter M 2012. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat. Struct. Mol. Biol. 19:1117–21
    [Google Scholar]
  21. Chou W-H, Hall KJ, Wilson DB, Wideman CL, Townson SM et al. 1996. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron 17:61101–15
    [Google Scholar]
  22. Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR 2011. Defining the computational structure of the motion detector in Drosophila. . Neuron 70:61165–77
    [Google Scholar]
  23. Clark DA, Fitzgerald JE, Ales JM, Gohl DM, Silies MA et al. 2014. Flies and humans share a motion estimation strategy that exploits natural scene statistics. Nat. Neurosci. 17:2296–303
    [Google Scholar]
  24. Cohen B, Matsuo V, Raphan T 1977. Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J. Physiol. 270:2321–44
    [Google Scholar]
  25. Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y et al. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. . Nature 448:151–56
    [Google Scholar]
  26. Ding H, Smith RG, Poleg-Polsky A, Diamond JS, Briggman KL 2016. Species-specific wiring for direction selectivity in the mammalian retina. Nature 535:105–10
    [Google Scholar]
  27. Douglass JK, Strausfeld NJ 1995. Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons. J. Neurosci. 15:85596–611
    [Google Scholar]
  28. Dror RO, O'Carroll DC, Laughlin SB 2001. Accuracy of velocity estimation by Reichardt correlators. J. Opt. Soc. Am. A 18:2241
    [Google Scholar]
  29. Dubs A 1982. The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J. Comp. Physiol. 146:3321–43
    [Google Scholar]
  30. Dvorak DR, Bishop LG, Eckert HE 1975. On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100:15–23
    [Google Scholar]
  31. Eckert H 1973. Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14:11–23
    [Google Scholar]
  32. Egelhaaf M, Borst A, Reichardt W 1989. Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am. A 6:71070–87
    [Google Scholar]
  33. Egelhaaf M, Reichardt W 1987. Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol. Cybern. 56:2–369–87
    [Google Scholar]
  34. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A 2011. Internal structure of the fly elementary motion detector. Neuron 70:61155–64
    [Google Scholar]
  35. Euler T, Detwiler PB, Denk W 2002. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:845–52
    [Google Scholar]
  36. Fischbach K-F, Dittrich AP 1989. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–75
    [Google Scholar]
  37. Fisher YE, Leong JCS, Sporar K, Ketkar MD, Gohl DM et al. 2015.a A class of visual neurons with wide-field properties is required for local motion detection. Curr. Biol. 25:243178–89
    [Google Scholar]
  38. Fisher YE, Silies MA, Clandinin TR 2015.b Orientation selectivity sharpens motion detection in Drosophila. . Neuron 88:2390–402
    [Google Scholar]
  39. Fisher YE, Yang HH, Isaacman-Beck J, Xie M, Gohl DM, Clandinin TR 2017. FlpStop, a tool for conditional gene control in Drosophila. . eLife 6:e22279
    [Google Scholar]
  40. Fitzgerald JE, Clark DA 2015. Nonlinear circuits for naturalistic visual motion estimation. eLife 4:e09123
    [Google Scholar]
  41. Fitzgerald JE, Katsov AY, Clandinin TR, Schnitzer MJ 2011. Symmetries in stimulus statistics shape the form of visual motion estimators. PNAS 108:3112909–14
    [Google Scholar]
  42. Fotowat H, Gabbiani F 2011. Collision detection as a model for sensory-motor integration. Annu. Rev. Neurosci. 34:1–19
    [Google Scholar]
  43. Freifeld L, Clark DA, Schnitzer MJ, Horowitz MA, Clandinin TR 2013. GABAergic lateral interactions tune the early stages of visual processing in Drosophila. . Neuron 78:61075–89
    [Google Scholar]
  44. Gibson JJ 1950. The Perception of the Visual World Oxford, UK: Houghton Mifflin
  45. Götz KG 1964. Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila. . Kybernetik 2:277–92
    [Google Scholar]
  46. Götz KG 1968. Flight control in Drosophila by visual perception of motion. Kybernetik 4:6199–208
    [Google Scholar]
  47. Gruntman E, Romani S, Reiser MB 2018. Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila. Nat. Neurosci 21:2250–57
    [Google Scholar]
  48. Guo A, Reichardt W 1987. An estimation of the time constant of movement detectors. Sci. Nat. 74:291–92
    [Google Scholar]
  49. Haag J, Arenz A, Serbe E, Gabbiani F, Borst A 2016. Complementary mechanisms create direction selectivity in the fly. eLife 5:e17421
    [Google Scholar]
  50. Haag J, Denk W, Borst A 2004. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. PNAS 101:4616333–38
    [Google Scholar]
  51. Haag J, Mishra A, Borst A 2017. A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway. eLife 6:e29044
    [Google Scholar]
  52. Hamilton DB, Albrecht DG, Geisler WS 1989. Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer function. Vis. Res. 29:101285–308
    [Google Scholar]
  53. Hardie RC, Weckström M 1990. Three classes of potassium channels in large monopolar cells of the blowfly Calliphora vicina. J. Comp. Physiol 167:723–36
    [Google Scholar]
  54. Hassenstein B 1951. Ommatidienraster und afferente Bewegungsintegration: Versuche an dem Rüsselkäfer Chlorophanus viridis. Z. Vgl. Physiol 33:4301–26
    [Google Scholar]
  55. Hassenstein B, Reichardt W 1956. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift Für Naturforsch. B 11:9–10513–24
    [Google Scholar]
  56. Hausen K 1976. Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Zeitschrift Für Naturforsch. B 31:9–10629–34
    [Google Scholar]
  57. Hausen K 1982. Motion sensitive interneurons in the optomotor system of the fly. Biol. Cybern. 46:167–79
    [Google Scholar]
  58. Hausselt SE, Euler T, Detwiler PB, Denk W 2007. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLOS Biol 5:7e185
    [Google Scholar]
  59. Heisenberg M, Buchner E 1977. The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol 117:2127–62
    [Google Scholar]
  60. Hubel DH, Wiesel TN 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:3574–91
    [Google Scholar]
  61. Hubel DH, Wiesel TN 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  62. Huber A, Schulz S, Bentrop J, Groell C, Wolfrum U, Paulsen R 1997. Molecular cloning of Drosophila Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells. FEBS Lett 406:1–26–10
    [Google Scholar]
  63. Jagadeesh B, Wheat HS, Ferster D 1993. Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262:51411901–4
    [Google Scholar]
  64. Jan LY, Jan Y-N 1976. L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J. Physiol 262:1215–36
    [Google Scholar]
  65. Joesch M, Plett J, Borst A, Reiff DF 2008. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol 18:5368–74
    [Google Scholar]
  66. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A 2010. ON and OFF pathways in Drosophila motion vision. Nature 468:300–4
    [Google Scholar]
  67. Joesch M, Weber F, Eichner H, Borst A 2013. Functional specialization of parallel motion detection circuits in the fly. J. Neurosci. 33:3902–5
    [Google Scholar]
  68. Katsov AY, Clandinin TR 2008. Motion processing streams in Drosophila are behaviorally specialized. Neuron 59:2322–35
    [Google Scholar]
  69. Krapp HG, Hengstenberg R 1996. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:463–66
    [Google Scholar]
  70. Land MF, Collett TS 1974. Chasing behaviour of houseflies (Fannia canicularis). J. Comp. Physiol. 89:4331–57
    [Google Scholar]
  71. Laughlin SB 1987. Form and function in retinal processing. Trends Neurosci 10:11478–83
    [Google Scholar]
  72. Leong JCS, Esch JJ, Poole B, Ganguli S, Clandinin TR 2016. Direction selectivity in Drosophila emerges from preferred-direction enhancement and null-direction suppression. J. Neurosci. 36:318078–92
    [Google Scholar]
  73. Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A 2016. Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nat. Neurosci. 19:5706–15
    [Google Scholar]
  74. Leonhardt A, Meier M, Serbe E, Eichner H, Borst A 2017. Neural mechanisms underlying sensitivity to reverse-phi motion in the fly. PLOS ONE 12:121–25
    [Google Scholar]
  75. Lien AD, Scanziani M 2018. Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558:80–86
    [Google Scholar]
  76. Liu WW, Wilson RI 2013. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. PNAS 110:2510294–99
    [Google Scholar]
  77. Livingstone MS 1998. Mechanisms of direction selectivity in macaque V1. Neuron 20:3509–26
    [Google Scholar]
  78. Maisak MS, Haag J, Ammer G, Serbe E, Meier M et al. 2013. A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–16
    [Google Scholar]
  79. Marmarelis PZ, McCann GD 1973. Development and application of white-noise modeling techniques for studies of insect visual nervous system. Kybernetik 12:274–89
    [Google Scholar]
  80. Mauss AS, Busch C, Borst A 2017.a Optogenetic neuronal silencing in Drosophila during visual processing. Sci. Rep. 7:11–12
    [Google Scholar]
  81. Mauss AS, Meier M, Serbe E, Borst A 2014. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34:62254–63
    [Google Scholar]
  82. Mauss AS, Vlasits A, Borst A, Feller M 2017.b Visual circuits for direction selectivity. Annu. Rev. Neurosci. 40:211–30
    [Google Scholar]
  83. McCann GD, MacGinitie GF 1965. Optomotor response studies of insect vision. Proc. R. Soc. B 163:992369–401
    [Google Scholar]
  84. McLean J, Palmer LA 1989. Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. Vis. Res. 29:6675–79
    [Google Scholar]
  85. Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A 2014. Neural circuit components of the Drosophila OFF motion vision pathway. Curr. Biol. 24:4385–92
    [Google Scholar]
  86. Meinertzhagen IA, O'Neil SD 1991. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol 305:2232–63
    [Google Scholar]
  87. Movshon JA, Thompson ID, Tolhurst DJ 1978. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283:53–77
    [Google Scholar]
  88. Nagarkar-Jaiswal S, Manivannan SN, Zuo Z, Bellen HJ 2017. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells. eLife 6:e26420
    [Google Scholar]
  89. Nakayama K 1985. Biological image motion processing: a review. Vis. Res. 25:5625–60
    [Google Scholar]
  90. O'Malley DM, Sandell JH, Masland RH 1992. Co-release of acetylcholine and GABA by the starburst amacrine cells. J. Neurosci. 12:41394–408
    [Google Scholar]
  91. O'Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML 1985. The Drosophila ninaE gene encodes an opsin. Cell 40:4839–50
    [Google Scholar]
  92. Papatsenko D, Sheng G, Desplan C 1997. A new rhodopsin in R8 photoreceptors of Drosophila: evidence for coordinate expression with Rh3 in R7 cells. Development 124:91665–73
    [Google Scholar]
  93. Poleg-Polsky A, Ding H, Diamond JS 2018. Functional compartmentalization within starburst amacrine cell dendrites in the retina. Cell Rep 22:112809–17
    [Google Scholar]
  94. Quenzer T, Zanker JM 1991. Visual detection of paradoxical motion in flies. J. Comp. Physiol. 169:3331–40
    [Google Scholar]
  95. Ratliff CP, Borghuis BG, Kao Y-H, Sterling P, Balasubramanian V 2010. Retina is structured to process an excess of darkness in natural scenes. PNAS 107:4017368–73
    [Google Scholar]
  96. Reichardt W 1961. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Principles of Sensory Communications WA Rosenblith 303–17 New York: John Wiley
    [Google Scholar]
  97. Reichardt W 1987. Evaluation of optical motion information by movement detectors. J. Comp. Physiol. 161:4533–47
    [Google Scholar]
  98. Reid RC, Soodak RE, Shapley RM 1991. Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J. Neurophysiol. 66:2505–29
    [Google Scholar]
  99. Reiff DF, Plett J, Mank M, Griesbeck O, Borst A 2010. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat. Neurosci 13:8973–78
    [Google Scholar]
  100. Riehle A, Franceschini N 1984. Motion detection in flies: parametric control over ON-OFF pathways. Exp. Brain Res. 54:2390–94
    [Google Scholar]
  101. Rister J, Pauls D, Schnell B, Ting C-Y, Lee C-H et al. 2007. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. . Neuron 56:1155–70
    [Google Scholar]
  102. Rivera-Alba M, Vitaladevuni SN, Mishchenko Y, Lu Z, Takemura S et al. 2011. Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr. Biol. 21:232000–5
    [Google Scholar]
  103. Salazar-Gatzimas E, Chen J, Creamer MS, Mano O, Mandel HB et al. 2016. Direct measurement of correlation responses in Drosophila elementary motion detectors reveals fast timescale tuning. Neuron 92:1227–39
    [Google Scholar]
  104. Schnell B, Raghu SV, Nern A, Borst A 2012. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol 198:5389–95
    [Google Scholar]
  105. Serbe E, Meier M, Leonhardt A, Borst A 2016. Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 89:4829–41
    [Google Scholar]
  106. Shinomiya K, Karuppudurai T, Lin T-Y, Lu Z, Lee C-H, Meinertzhagen IA 2014. Candidate neural substrates for off-edge motion detection in Drosophila. Curr. Biol 24:101062–70
    [Google Scholar]
  107. Silies MA, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR 2013. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:1111–27
    [Google Scholar]
  108. Single S, Borst A 1998. Dendritic integration and its role in computing image velocity. Science 281:53841848–50
    [Google Scholar]
  109. Srinivasan MV, Laughlin SB, Dubs A 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. B 216:1205427–59
    [Google Scholar]
  110. Srinivasan MV, Zhang S, Lehrer M, Collett TS 1996. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199:1237–44
    [Google Scholar]
  111. Strausfeld NJ, Braitenberg V 1970. The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Z. Vgl. Physiol. 70:295–104
    [Google Scholar]
  112. Strother JA, Nern A, Reiser MB 2014. Direct observation of on and off pathways in the Drosophila visual system. Curr. Biol. 24:9976–83
    [Google Scholar]
  113. Strother JA, Wu S-T, Wong AM, Nern A, Rogers EM et al. 2017. The emergence of directional selectivity in the visual motion pathway of Drosophila. . Neuron 94:1168–182.e10
    [Google Scholar]
  114. Takemura S-y, Bharioke A, Lu Z, Nern A, Vitaladevuni SN et al. 2013. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–81
    [Google Scholar]
  115. Takemura S-y, Karuppudurai T, Ting C-Y, Lu Z, Lee C-H, Meinertzhagen IA 2011. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21:242077–84
    [Google Scholar]
  116. Takemura S-y, Lu Z, Meinertzhagen IA 2008. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509:5493–513
    [Google Scholar]
  117. Takemura S-y, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA 2017. The comprehensive connectome of a neural substrate for “ON” motion detection in Drosophila. . eLife 6:e24394
    [Google Scholar]
  118. Taylor WR, Smith RG 2012. The role of starburst amacrine cells in visual signal processing. Vis. Neurosci. 29:173–81
    [Google Scholar]
  119. Theobald JC, Duistermars BJ, Ringach DL, Frye MA 2008. Flies see second-order motion. Curr. Biol. 18:11R464–65
    [Google Scholar]
  120. Tukker JJ, Taylor WR, Smith RG 2004. Direction selectivity in a model of the starburst amacrine cell. Vis. Neurosci. 21:4611–25
    [Google Scholar]
  121. Tuthill JC, Chiappe ME, Reiser MB 2011. Neural correlates of illusory motion perception in Drosophila. . PNAS 108:239685–90
    [Google Scholar]
  122. Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB 2013. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79:1128–40
    [Google Scholar]
  123. Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF et al. 2016. A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron 89:61317–30
    [Google Scholar]
  124. Wardill TJ, List O, Li X, Dongre SA, McCulloch M et al. 2012. Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:6083925–31
    [Google Scholar]
  125. Xue Z, Wu M, Wen K, Ren M, Long L et al. 2014. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila. . G3 Genes Genomes Genet 4:112167–73
    [Google Scholar]
  126. Yamaguchi S, Wolf R, Desplan C, Heisenberg M 2008. Motion vision is independent of color in Drosophila. . PNAS 105:124910–15
    [Google Scholar]
  127. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR 2016. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166:1245–57
    [Google Scholar]
  128. Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S 2001. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30:3771–80
    [Google Scholar]
  129. Zettler F, Järvilehto M 1971. Decrement-free conduction of graded potentials along the axon of a monopolar neuron. Z. Vgl. Physiol. 75:4402–21
    [Google Scholar]
  130. Zettler F, Järvilehto M 1972. Lateral inhibition in an insect eye. Z. Vgl. Physiol. 76:3233–44
    [Google Scholar]
  131. Zhu Y, Nern A, Zipursky SL, Frye MA 2009. Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly. Curr. Biol. 19:7613–19
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034153
Loading
/content/journals/10.1146/annurev-vision-091517-034153
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error