1932

Abstract

Axon guidance relies on a combinatorial code of receptor and ligand interactions that direct adhesive/attractive and repulsive cellular responses. Recent structural data have revealed many of the molecular mechanisms that govern these interactions and enabled the design of sophisticated mutant tools to dissect their biological functions. Here, we discuss the structure/function relationships of four major classes of guidance cues (ephrins, semaphorins, slits, netrins) and examples of morphogens (Wnt, Shh) and of cell adhesion molecules (FLRT). These cell signaling systems rely on specific modes of receptor-ligand binding that are determined by selective binding sites; however, defined structure-encoded receptor promiscuity also enables cross talk between different receptor/ligand families and can also involve extracellular matrix components. A picture emerges in which a multitude of highly context-dependent structural assemblies determines the finely tuned cellular behavior required for nervous system development.

Keyword(s): ephrinFLRTmorphogennetrinsemaphorinslit
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-125008
2016-10-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-111315-125008.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-125008&mimeType=html&fmt=ahah

Literature Cited

  1. Aci-Sèche S, Sawma P, Hubert P, Sturgis JN, Bagnard D. et al. 2014. Transmembrane recognition of the semaphorin co-receptors neuropilin 1 and plexin A1: coarse-grained simulations. PLOS ONE 9:5e97779 [Google Scholar]
  2. Adams RH, Lohrum M, Klostermann A, Betz H, Püschel AW. 1997. The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J. 16:206077–86 [Google Scholar]
  3. Ahn VE, Chu ML-H, Choi H-J, Tran D, Abo A, Weis WI. 2011. Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev. Cell 21:5862–73 [Google Scholar]
  4. Andrews GL, Tanglao S, Farmer WT, Morin S, Brotman S. et al. 2008. Dscam guides embryonic axons by Netrin-dependent and -independent functions. Development 135:233839–48 [Google Scholar]
  5. Antipenko A, Himanen J-P, van Leyen K, Nardi-Dei V, Lesniak J. et al. 2003. Structure of the semaphorin-3A receptor binding module. Neuron 39:4589–98 [Google Scholar]
  6. Appleton BA, Wu P, Maloney J, Yin J, Liang W-C. et al. 2007. Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J. 26:234902–12 [Google Scholar]
  7. Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H. et al. 2010. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 15:111053–66 [Google Scholar]
  8. Atapattu L, Lackmann M, Janes PW. 2014. The role of proteases in regulating Eph/ephrin signaling. Cell Adhes. Migr. 8:4294–307 [Google Scholar]
  9. Atapattu L, Saha N, Llerena C, Vail ME, Scott AM. et al. 2012. Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J. Cell Sci. 125:Part 246084–93 [Google Scholar]
  10. Avilés EC, Stoeckli ET. 2016. Canonical Wnt signaling is required for commissural axon guidance. Dev. Neurobiol. 76:2190–208 [Google Scholar]
  11. Avilés EC, Wilson NH, Stoeckli ET. 2013. Sonic hedgehog and Wnt: antagonists in morphogenesis but collaborators in axon guidance. Front. Cell. Neurosci. 7:86 [Google Scholar]
  12. Barak R, Lahmi R, Gevorkyan-Airapetov L, Levy E, Tzur A, Opatowsky Y. 2014. Crystal structure of the extracellular juxtamembrane region of Robo1. J. Struct. Biol. 186:2283–91 [Google Scholar]
  13. Barquilla A, Pasquale EB. 2015. Eph receptors and ephrins: therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 55:465–87 [Google Scholar]
  14. Barton R, Palacio D, Iovine MK, Berger BW. 2015. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction. PLOS ONE 10:1e0116368 [Google Scholar]
  15. Bell CH, Aricescu AR, Jones EY, Siebold C. 2011. A dual binding mode for RhoGTPases in plexin signalling. PLOS Biol. 9:8e1001134 [Google Scholar]
  16. Bennett KL, Bradshaw J, Youngman T, Rodgers J, Greenfield B. et al. 1997. Deleted in colorectal carcinoma (DCC) binds heparin via its fifth fibronectin type III domain. J. Biol. Chem. 272:4326940–46 [Google Scholar]
  17. Bishop B, Aricescu AR, Harlos K, O'Callaghan CA, Jones EY, Siebold C. 2009. Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nat. Struct. Mol. Biol. 16:7698–703 [Google Scholar]
  18. Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS. et al. 2008. Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J. Biol. Chem. 283:4329385–95 [Google Scholar]
  19. Bocharov EV, Mayzel ML, Volynsky PE, Mineev KS, Tkach EN. et al. 2010. Left-handed dimer of EphA2 transmembrane domain: helix packing diversity among receptor tyrosine kinases. Biophys. J. 98:5881–89 [Google Scholar]
  20. Böttcher RT, Pollet N, Delius H, Niehrs C. 2004. The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nat. Cell Biol. 6:138–44 [Google Scholar]
  21. Boucard AA, Maxeiner S, Südhof TC. 2014. Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J. Biol. Chem. 289:1387–402 [Google Scholar]
  22. Bourhis E, Tam C, Franke Y, Bazan JF, Ernst J. et al. 2010. Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J. Biol. Chem. 285:129172–79 [Google Scholar]
  23. Bourhis E, Wang W, Tam C, Hwang J, Zhang Y. et al. 2011. Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure 19:101433–42 [Google Scholar]
  24. Bowden TA, Aricescu AR, Nettleship JE, Siebold C, Rahman-Huq N. et al. 2009. Structural plasticity of Eph receptor A4 facilitates cross-class ephrin signaling. Structure 17:101386–97 [Google Scholar]
  25. Briscoe J, Thérond PP. 2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14:416–29 [Google Scholar]
  26. Brown HE, Reichert MC, Evans TA. 2015. Slit binding via the Ig1 domain is essential for midline repulsion by Drosophila Robo1 but dispensable for receptor expression, localization, and regulation in vivo. Genes Genomes Genet. 5:112429–39 [Google Scholar]
  27. Carman CV, Springer TA. 2003. Integrin avidity regulation: Are changes in affinity and conformation underemphasized?. Curr. Opin. Cell Biol. 15:5547–56 [Google Scholar]
  28. Carvalho RF, Beutler M, Marler KJM, Knöll B, Becker-Barroso E. et al. 2006. Silencing of EphA3 through a cis interaction with ephrinA5. Nat. Neurosci. 9:3322–30 [Google Scholar]
  29. Chang T-H, Hsieh F-L, Zebisch M, Harlos K, Elegheert J, Jones EY. 2015. Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan. eLife 4:e06554 [Google Scholar]
  30. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M. 2003. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:111–23 [Google Scholar]
  31. Chavent M, Chetwynd AP, Stansfeld PJ, Sansom MSP. 2014. Dimerization of the EphA1 receptor tyrosine kinase transmembrane domain: insights into the mechanism of receptor activation. Biochemistry 53:426641–52 [Google Scholar]
  32. Chavent M, Seiradake E, Jones EY, Sansom MSP. 2016. Structures of the EphA2 receptor at the membrane: role of lipid interactions. Structure 24:2337–47 [Google Scholar]
  33. Chen P-H, Chen X, Lin Z, Fang D, He X. 2013. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev. 27:121345–50 [Google Scholar]
  34. Chen S, Bubeck D, MacDonald BT, Liang W-X, Mao J-H. et al. 2011. Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. Dev. Cell 21:5848–61 [Google Scholar]
  35. Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT. et al. 2011. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat. Struct. Mol. Biol. 18:111204–10 [Google Scholar]
  36. Chilton JK. 2006. Molecular mechanisms of axon guidance. Dev. Biol. 292:113–24 [Google Scholar]
  37. Chothia C, Jones EY. 1997. The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 66:823–62 [Google Scholar]
  38. Clevers H. 2006. Wnt/β-catenin signaling in development and disease. Cell 127:3469–80 [Google Scholar]
  39. Colamarino SA, Tessier-Lavigne M. 1995. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81:4621–29 [Google Scholar]
  40. Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ. 2001. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412:684286–90 [Google Scholar]
  41. Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S. 2008. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Structure 16:6873–84 [Google Scholar]
  42. Davletov BA, Shamotienko OG, Lelianova VG, Grishin EV, Ushkaryov YA. 1996. Isolation and biochemical characterization of a Ca2+-independent α-latrotoxin-binding protein. J. Biol. Chem. 271:3823239–45 [Google Scholar]
  43. Day ES, Wen D, Garber EA, Hong J, Avedissian LS. et al. 1999. Zinc-dependent structural stability of human Sonic hedgehog. Biochemistry 38:4514868–80 [Google Scholar]
  44. Delloye-Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H. et al. 2015. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat. Neurosci. 18:136–45 [Google Scholar]
  45. Domanitskaya E, Wacker A, Mauti O, Baeriswyl T, Esteve P. et al. 2010. Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity. J. Neurosci. 30:3311167–76 [Google Scholar]
  46. Domené S, Stanescu H, Wallis D, Tinloy B, Pineda DE. et al. 2011. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am. J. Med. Genet. B 156:111–18 [Google Scholar]
  47. Doyle SE, Scholz MJ, Greer KA, Hubbard AD, Darnell DK. et al. 2006. Latrophilin-2 is a novel component of the epithelial-mesenchymal transition within the atrioventricular canal of the embryonic chicken heart. Dev. Dyn. 235:123213–21 [Google Scholar]
  48. Dufour A, Egea J, Kullander K, Klein R, Vanderhaeghen P. 2006. Genetic analysis of EphA-dependent signaling mechanisms controlling topographic mapping in vivo. Development 133:224415–20 [Google Scholar]
  49. Egea J, Erlacher C, Montanez E, Burtscher I, Yamagishi S. et al. 2008. Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation. Genes Dev. 22:233349–62 [Google Scholar]
  50. Egea J, Nissen UV, Dufour A, Sahin M, Greer P. et al. 2005. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47:4515–28 [Google Scholar]
  51. Evans TA, Santiago C, Arbeille E, Bashaw GJ. 2015. Robo2 acts in trans to inhibit Slit-Robo1 repulsion in pre-crossing commissural axons. eLife 4:e08407 [Google Scholar]
  52. Fenstermaker AG, Prasad AA, Bechara A, Adolfs Y, Tissir F. et al. 2010. Wnt/planar cell polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem. J. Neurosci. 30:4716053–64 [Google Scholar]
  53. Finci LI, Krüger N, Sun X, Zhang J, Chegkazi M. et al. 2014. The crystal structure of netrin-1 in complex with DCC reveals the bifunctionality of netrin-1 as a guidance cue. Neuron 83:4839–49 [Google Scholar]
  54. Fukuhara N, Howitt JA, Hussain S-A, Hohenester E. 2008. Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo. J. Biol. Chem. 283:2316226–34 [Google Scholar]
  55. Fuse N, Maiti T, Wang B, Porter JA, Hall TM. et al. 1999. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for Patched. PNAS 96:2010992–99 [Google Scholar]
  56. Gatto G, Morales D, Kania A, Klein R. 2014. EphA4 receptor shedding regulates spinal motor axon guidance. Curr. Biol. 24:202355–65 [Google Scholar]
  57. Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL. et al. 2014. Dendrite self-avoidance requires cell-autonomous Slit/Robo signaling in cerebellar Purkinje cells. Neuron 81:51040–56 [Google Scholar]
  58. Grandin M, Meier M, Delcros JG, Nikodemus D, Reuten R. et al. 2016. Structural decoding of the netrin-1/UNC5 interaction and its therapeutical implications in cancers. Cancer Cell 29:2173–85 [Google Scholar]
  59. Griffith J, Black J, Faerman C, Swenson L, Wynn M. et al. 2004. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol. Cell 13:2169–78 [Google Scholar]
  60. Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B. et al. 2003. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 5:45–57 [Google Scholar]
  61. Guo H-F, Li X, Parker MW, Waltenberger J, Becker PM, Vander Kooi CW. 2013. Mechanistic basis for the potent anti-angiogenic activity of semaphorin 3F. Biochemistry 52:437551–58 [Google Scholar]
  62. Haines BP, Wheldon LM, Summerbell D, Heath JK, Rigby PWJ. 2006. Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development. Dev. Biol. 297:114–25 [Google Scholar]
  63. Hall TM, Porter JA, Beachy PA, Leahy DJ. 1995. A potential catalytic site revealed by the 1.7-Å crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature 378:6553212–16 [Google Scholar]
  64. Hattori M, Osterfield M, Flanagan JG. 2000. Regulated cleavage of a contact-mediated axon repellent. Science 289:54831360–65 [Google Scholar]
  65. He H, Yang T, Terman JR, Zhang X. 2009. Crystal structure of the plexin A3 intracellular region reveals an autoinhibited conformation through active site sequestration. PNAS 106:3715610–15 [Google Scholar]
  66. Himanen JP, Goldgur Y, Miao H, Myshkin E, Guo H. et al. 2009. Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep. 10:7722–28 [Google Scholar]
  67. Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB. 2001. Crystal structure of an Eph receptor-ephrin complex. Nature 414:6866933–38 [Google Scholar]
  68. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K. et al. 2010. Architecture of Eph receptor clusters. PNAS 107:2410860–65 [Google Scholar]
  69. Holdsworth G, Slocombe P, Doyle C, Sweeney B, Veverka V. et al. 2012. Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. J. Biol. Chem. 287:3226464–77 [Google Scholar]
  70. Hu H. 2001. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat. Neurosci. 4:7695–701 [Google Scholar]
  71. Hussain S-A, Piper M, Fukuhara N, Strochlic L, Cho G. et al. 2006. A molecular mechanism for the heparan sulfate dependence of Slit-Robo signaling. J. Biol. Chem. 281:5139693–98 [Google Scholar]
  72. Imai T, Yamazaki T, Kobayakawa R, Kobayakawa K, Abe T. et al. 2009. Pre-target axon sorting establishes the neural map topography. Science 325:5940585–90 [Google Scholar]
  73. Ingham PW, McMahon AP. 2001. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15:233059–87 [Google Scholar]
  74. Izzi L, Lévesque M, Morin S, Laniel D, Wilkes BC. et al. 2011. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev. Cell 20:6788–801 [Google Scholar]
  75. Jackson VA, del Toro D, Carrasquero M, Roversi P, Harlos K. et al. 2015. Structural basis of latrophilin-FLRT interaction. Structure 23:4774–81 [Google Scholar]
  76. Jackson VA, Mehmood S, Chavent M, Roversi P, Carrasquero M. et al. 2016. Super-complexes of adhesion GPCRs and neural guidance receptors. Nat. Commun. 711184 [Google Scholar]
  77. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. 2012. Structural basis of Wnt recognition by Frizzled. Science 337:609059–64 [Google Scholar]
  78. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH. et al. 2005. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123:2291–304 [Google Scholar]
  79. Janes PW, Wimmer-Kleikamp SH, Frangakis AS, Treble K, Griesshaber B. et al. 2009. Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. PLOS Biol. 7:10e1000215 [Google Scholar]
  80. Janssen BJC, Malinauskas T, Weir GA, Cader MZ, Siebold C, Jones EY. 2012. Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat. Struct. Mol. Biol. 19:121293–99 [Google Scholar]
  81. Janssen BJC, Robinson RA, Pérez-Brangulí F, Bell CH, Mitchell KJ. et al. 2010. Structural basis of semaphorin-plexin signalling. Nature 467:73191118–22 [Google Scholar]
  82. Jaworski A, Tom I, Tong RK, Gildea HK, Koch AW. et al. 2015. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science 350:6263961–65 [Google Scholar]
  83. Jin S, Martinelli DC, Zheng X, Tessier-Lavigne M, Fan C-M. 2015. Gas1 is a receptor for sonic hedgehog to repel enteric axons. PNAS 112:1E73–80 [Google Scholar]
  84. Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK. et al. 2009. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat. Cell Biol. 11:111325–31 [Google Scholar]
  85. Jongbloets BC, Pasterkamp RJ. 2014. Semaphorin signalling during development. Development 141:173292–97 [Google Scholar]
  86. Kakugawa S, Langton PF, Zebisch M, Howell SA, Chang T-H. et al. 2015. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519:7542187–92 [Google Scholar]
  87. Kania A, Klein R. 2016. Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 17:240–56 [Google Scholar]
  88. Kao T-J, Kania A. 2011. Ephrin-mediated cis-attenuation of Eph receptor signaling is essential for spinal motor axon guidance. Neuron 71:176–91 [Google Scholar]
  89. Karaulanov EE, Böttcher RT, Niehrs C. 2006. A role for fibronectin-leucine-rich transmembrane cell-surface proteins in homotypic cell adhesion. EMBO Rep. 7:3283–90 [Google Scholar]
  90. Karaulanov EE, Böttcher RT, Stannek P, Wu W, Rau M. et al. 2009. Unc5B interacts with FLRT3 and Rnd1 to modulate cell adhesion in Xenopus embryos. PLOS ONE 4:5e5742 [Google Scholar]
  91. Kavran JM, Ward MD, Oladosu OO, Mulepati S, Leahy DJ. 2010. All mammalian Hedgehog proteins interact with cell adhesion molecule, down-regulated by oncogenes (CDO) and brother of CDO (BOC) in a conserved manner. J. Biol. Chem. 285:3224584–90 [Google Scholar]
  92. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS. et al. 1996. Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87:2175–85 [Google Scholar]
  93. Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M. 1994. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:3425–35 [Google Scholar]
  94. Kerekes K, Bányai L, Patthy L. 2015. Wnts grasp the WIF domain of Wnt Inhibitory Factor 1 at two distinct binding sites. FEBS Lett. 589:203044–51 [Google Scholar]
  95. Klostermann A, Lohrum M, Adams RH, Püschel AW. 1998. The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization. J. Biol. Chem. 273:137326–31 [Google Scholar]
  96. Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J. et al. 2011. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev. Cell 20:133–46 [Google Scholar]
  97. Kolodkin AL, Tessier-Lavigne M. 2011. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect. Biol. 3:6a001727 [Google Scholar]
  98. Koppel AM, Raper JA. 1998. Collapsin-1 covalently dimerizes, and dimerization is necessary for collapsing activity. J. Biol. Chem. 273:2515708–13 [Google Scholar]
  99. Koropouli E, Kolodkin AL. 2014. Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr. Opin. Neurobiol. 27:1–7 [Google Scholar]
  100. Krasnoperov VG, Beavis R, Chepurny OG, Little AR, Plotnikov AN, Petrenko AG. 1996. The calcium-independent receptor of α-latrotoxin is not a neurexin. Biochem. Biophys. Res. Commun. 227:3868–75 [Google Scholar]
  101. Lange M, Norton W, Coolen M, Chaminade M, Merker S. et al. 2012. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 17:9946–54 [Google Scholar]
  102. Langenhan T, Prömel S, Mestek L, Esmaeili B, Waller-Evans H. et al. 2009. Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev. Cell 17:4494–504 [Google Scholar]
  103. Leyva-Díaz E, del Toro D, Menal MJ, Cambray S, Susín R. et al. 2014. FLRT3 is a Robo1-interacting protein that determines Netrin-1 attraction in developing axons. Curr. Biol. 24:5494–508 [Google Scholar]
  104. Li Z, Moniz H, Wang S, Ramiah A, Zhang F. et al. 2015. High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J. Biol. Chem. 290:1710729–40 [Google Scholar]
  105. Liang Y, Annan RS, Carr SA, Popp S, Mevissen M. et al. 1999. Mammalian homologues of the Drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J. Biol. Chem. 274:2517885–92 [Google Scholar]
  106. Liepinsh E, Bányai L, Patthy L, Otting G. 2006. NMR structure of the WIF domain of the human Wnt–inhibitory factor-1. J. Mol. Biol. 357:3942–50 [Google Scholar]
  107. Liu G, Li W, Wang L, Kar A, Guan K-L. et al. 2009. DSCAM functions as a netrin receptor in commissural axon pathfinding. PNAS 106:82951–56 [Google Scholar]
  108. Liu H, Juo ZS, Shim AH, Focia PJ, Chen X. et al. 2010. Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell 142:5749–61 [Google Scholar]
  109. Liu Y, Shi J, Lu C-C, Wang Z-B, Lyuksyutova AI. et al. 2005. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat. Neurosci. 8:91151–59 [Google Scholar]
  110. Logan CY, Nusse R. 2004. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20:781–810 [Google Scholar]
  111. Long H, Sabatier C, Ma L, Plump A, Yuan W. et al. 2004. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42:2213–23 [Google Scholar]
  112. Love CA, Harlos K, Mavaddat N, Davis SJ, Stuart DI. et al. 2003. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat. Struct. Biol. 10:10843–48 [Google Scholar]
  113. Lu YC, Nazarko OV, Sando R, Salzman GS, Südhof TC, Araç D. 2015. Structural basis of Latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure 23:91678–91 [Google Scholar]
  114. Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E. 2008. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell 133:71241–54 [Google Scholar]
  115. Lyuksyutova AI, Lu C-C, Milanesio N, King LA, Guo N. et al. 2003. Anterior-posterior guidance of commissural axons by Wnt-Frizzled signaling. Science 302:56521984–88 [Google Scholar]
  116. Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY. 2011. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat. Struct. Mol. Biol. 18:8886–93 [Google Scholar]
  117. Malinauskas T, Jones EY. 2014. Extracellular modulators of Wnt signalling. Curr. Opin. Struct. Biol. 29:77–84 [Google Scholar]
  118. Marita M, Wang Y, Kaliszewski MJ, Skinner KC, Comar WD. et al. 2015. Class A plexins are organized as preformed inactive dimers on the cell surface. Biophys. J. 109:91937–45 [Google Scholar]
  119. McLellan JS, Zheng X, Hauk G, Ghirlando R, Beachy PA, Leahy DJ. 2008. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455:7215979–83 [Google Scholar]
  120. Morlot C, Thielens NM, Ravelli RBG, Hemrika W, Romijn RA. et al. 2007. Structural insights into the Slit-Robo complex. PNAS 104:3814923–28 [Google Scholar]
  121. Niehrs C. 2012. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13:12767–79 [Google Scholar]
  122. Nishimura-Akiyoshi S, Niimi K, Nakashiba T, Itohara S. 2007. Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. PNAS 104:3714801–6 [Google Scholar]
  123. Nogi T, Yasui N, Mihara E, Matsunaga Y, Noda M. et al. 2010. Structural basis for semaphorin signalling through the plexin receptor. Nature 467:73191123–27 [Google Scholar]
  124. Okada A, Charron F, Morin S, Shin DS, Wong K. et al. 2006. Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444:7117369–73 [Google Scholar]
  125. Onishi K, Hollis E, Zou Y. 2014. Axon guidance and injury-lessons from Wnts and Wnt signaling. Curr. Opin. Neurobiol. 27:232–40 [Google Scholar]
  126. O'Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S. et al. 2012. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73:5903–10 [Google Scholar]
  127. O'Sullivan ML, Martini F, von Daake S, Comoletti D, Ghosh A. 2014. LPHN3, a presynaptic adhesion-GPCR implicated in ADHD, regulates the strength of neocortical layer 2/3 synaptic input to layer 5. Neural Dev. 9:17 [Google Scholar]
  128. Owens RJ. 2015. Preface. Structural Proteomics: High-Throughput Methods RJ Owens p. v. Methods Mol. Biol. 1261 New York: Humana:, 2nd ed.. [Google Scholar]
  129. Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y. et al. 2003. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261:1251–67 [Google Scholar]
  130. Parker MW, Linkugel AD, Vander Kooi CW. 2013. Effect of C-terminal sequence on competitive semaphorin binding to neuropilin-1. J. Mol. Biol. 425:224405–14 [Google Scholar]
  131. Pascoe HG, Gutowski S, Chen H, Brautigam CA, Chen Z. et al. 2015. Secondary PDZ domain-binding site on class B plexins enhances the affinity for PDZ-RhoGEF. PNAS 112:4814852–57 [Google Scholar]
  132. Peng WC, de Lau W, Madoori PK, Forneris F, Granneman JCM. et al. 2013. Structures of Wnt-antagonist ZNRF3 and its complex with R-spondin 1 and implications for signaling. PLOS ONE 8:12e83110 [Google Scholar]
  133. Poulain FE, Yost HJ. 2015. Heparan sulfate proteoglycans: a sugar code for vertebrate development?. Development 142:203456–67 [Google Scholar]
  134. Purohit AA, Li W, Qu C, Dwyer T, Shao Q. et al. 2012. Down syndrome cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in netrin-1-mediated growth cone collapse. J. Biol. Chem. 287:3227126–38 [Google Scholar]
  135. Rakic P. 1988. Specification of cerebral cortical areas. Science 241:4862170–76 [Google Scholar]
  136. Ranaivoson FM, Liu Q, Martini F, Bergami F, von Daake S. et al. 2015. Structural and mechanistic insights into the Latrophilin3-FLRT3 complex that mediates glutamatergic synapse development. Structure 23:91665–77 [Google Scholar]
  137. Renaud J, Kerjan G, Sumita I, Zagar Y, Georget V. et al. 2008. Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells. Nat. Neurosci. 11:4440–49 [Google Scholar]
  138. Rosti K, Goldman A, Kajander T. 2015. Solution structure and biophysical characterization of the multifaceted signalling effector protein growth arrest specific-1. BMC Biochem 16:8 [Google Scholar]
  139. Salinas PC, Zou Y. 2008. Wnt signaling in neural circuit assembly. Annu. Rev. Neurosci. 31:339–58 [Google Scholar]
  140. Sawma P, Roth L, Blanchard C, Bagnard D, Crémel G. et al. 2014. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling. J. Mol. Biol. 426:244099–111 [Google Scholar]
  141. Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R. 2014. The composition of EphB2 clusters determines the strength in the cellular repulsion response. J. Cell Biol. 204:3409–22 [Google Scholar]
  142. Schmitt AM, Shi J, Wolf AM, Lu C-C, King LA, Zou Y. 2006. Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature 439:707231–37 [Google Scholar]
  143. Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R. et al. 2015. The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep. 11:6866–74 [Google Scholar]
  144. Scott PG, McEwan PA, Dodd CM, Bergmann EM, Bishop PN, Bella J. 2004. Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. PNAS 101:4415633–38 [Google Scholar]
  145. Seiradake E, Coles CH, Perestenko PV, Harlos K, McIlhinney RAJ. et al. 2011. Structural basis for cell surface patterning through NetrinG-NGL interactions. EMBO J 30:214479–88 [Google Scholar]
  146. Seiradake E, del Toro D, Nagel D, Cop F, Härtl R. et al. 2014. FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron 84:2370–85 [Google Scholar]
  147. Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY. 2010. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17:4398–402 [Google Scholar]
  148. Seiradake E, Schaupp A, del Toro Ruiz D, Kaufmann R, Mitakidis N. et al. 2013. Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat. Struct. Mol. Biol. 20:8958–64 [Google Scholar]
  149. Seiradake E, von Philipsborn AC, Henry M, Fritz M, Lortat-Jacob H. et al. 2009. Structure and functional relevance of the Slit2 homodimerization domain. EMBO Rep. 10:7736–41 [Google Scholar]
  150. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. 1994. The netrins define a family of axon outgrowth–promoting proteins homologous to C. elegans UNC-6. Cell 78:3409–24 [Google Scholar]
  151. Singh DR, Cao Q, King C, Salotto M, Ahmed F. et al. 2015. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem. J. 471:1101–9 [Google Scholar]
  152. Sloan TFW, Qasaimeh MA, Juncker D, Yam PT, Charron F. 2015. Integration of shallow gradients of Shh and Netrin-1 guides commissural axons. PLOS Biol. 13:3e1002119 [Google Scholar]
  153. Song JY, Holtz AM, Pinskey JM, Allen BL. 2015. Distinct structural requirements for CDON and BOC in the promotion of Hedgehog signaling. Dev. Biol. 402:2239–52 [Google Scholar]
  154. Stapleton D, Balan I, Pawson T, Sicheri F. 1999. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat. Struct. Biol. 6:144–49 [Google Scholar]
  155. Takahashi T, Strittmatter SM. 2001. PlexinA1 autoinhibition by the plexin sema domain. Neuron 29:2429–39 [Google Scholar]
  156. Thanos CD, Goodwill KE, Bowie JU. 1999. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283:5403833–36 [Google Scholar]
  157. Tong Y, Hota PK, Penachioni JY, Hamaneh MB, Kim S. et al. 2009. Structure and function of the intracellular region of the plexin-B1 transmembrane receptor. J. Biol. Chem. 284:5135962–72 [Google Scholar]
  158. Vakonakis I, Langenhan T, Prömel S, Russ A, Campbell ID. 2008. Solution structure and sugar-binding mechanism of mouse Latrophilin-1 RBL: a 7TM receptor–attached lectin-like domain. Structure 16:6944–53 [Google Scholar]
  159. van Amerongen R, Nusse R. 2009. Towards an integrated view of Wnt signaling in development. Development 136:193205–14 [Google Scholar]
  160. Visser JJ, Cheng Y, Perry SC, Chastain AB, Parsa B. et al. 2015. An extracellular biochemical screen reveals that FLRTs and Unc5s mediate neuronal subtype recognition in the retina. eLife 4:e08149 [Google Scholar]
  161. Wang C, Wu H, Katritch V, Han GW, Huang X-P. et al. 2013. Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:7449338–43 [Google Scholar]
  162. Wang R, Wei Z, Jin H, Wu H, Yu C. et al. 2009. Autoinhibition of UNC5b revealed by the cytoplasmic domain structure of the receptor. Mol. Cell 33:6692–703 [Google Scholar]
  163. Wang Y, He H, Srivastava N, Vikarunnessa S, Chen Y. et al. 2012. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci. Signal. 5:207ra6 [Google Scholar]
  164. Wang Y, Pascoe HG, Brautigam CA, He H, Zhang X. 2013. Structural basis for activation and non-canonical catalysis of the Rap GTPase activating protein domain of plexin. eLife 2:e01279 [Google Scholar]
  165. Whalen DM, Malinauskas T, Gilbert RJC, Siebold C. 2013. Structural insights into proteoglycan-shaped Hedgehog signaling. PNAS 110:4116420–25 [Google Scholar]
  166. Wheldon LM, Haines BP, Rajappa R, Mason I, Rigby PW, Heath JK. 2010. Critical role of FLRT1 phosphorylation in the interdependent regulation of FLRT1 function and FGF receptor signalling. PLOS ONE 5:4e10264 [Google Scholar]
  167. Wilson NH, Key B. 2006. Neogenin interacts with RGMa and Netrin-1 to guide axons within the embryonic vertebrate forebrain. Dev. Biol. 296:2485–98 [Google Scholar]
  168. Wolf AM, Lyuksyutova AI, Fenstermaker AG, Shafer B, Lo CG, Zou Y. 2008. Phosphatidylinositol-3-kinase–atypical protein kinase C signaling is required for Wnt attraction and anterior-posterior axon guidance. J. Neurosci. 28:133456–67 [Google Scholar]
  169. Woo J, Kwon S-K, Kim E. 2009. The NGL family of leucine-rich repeat–containing synaptic adhesion molecules. Mol. Cell. Neurosci. 42:11–10 [Google Scholar]
  170. Worzfeld T, Offermanns S. 2014. Semaphorins and plexins as therapeutic targets. Nat. Rev. Drug Discov. 13:8603–21 [Google Scholar]
  171. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. 2001. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106:6745–57 [Google Scholar]
  172. Xu K, Tzvetkova-Robev D, Xu Y, Goldgur Y, Chan Y-P. et al. 2013. Insights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5. PNAS 110:3614634–39 [Google Scholar]
  173. Xu K, Wu Z, Renier N, Antipenko A, Tzvetkova-Robev D. et al. 2014. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science 344:61891275–79 [Google Scholar]
  174. Yam PT, Charron F. 2013. Signaling mechanisms of non-conventional axon guidance cues: the Shh, BMP and Wnt morphogens. Curr. Opin. Neurobiol. 23:6965–73 [Google Scholar]
  175. Yam PT, Kent CB, Morin S, Farmer WT, Alchini R. et al. 2012. 14-3-3 proteins regulate a cell-intrinsic switch from Sonic Hedgehog–mediated commissural axon attraction to repulsion after midline crossing. Neuron 76:4735–49 [Google Scholar]
  176. Yamagishi S, Hampel F, Hata K, del Toro D, Schwark M. et al. 2011. FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J. 30:142920–33 [Google Scholar]
  177. Yung AR, Nishitani AM, Goodrich LV. 2015. Phenotypic analysis of mice completely lacking netrin 1. Development 142:213686–91 [Google Scholar]
  178. Zakrys L, Ward RJ, Pediani JD, Godin AG, Graham GJ, Milligan G. 2014. Roundabout 1 exists predominantly as a basal dimeric complex and this is unaffected by binding of the ligand Slit2. Biochem. J. 461:161–73 [Google Scholar]
  179. Zebisch M, Jones EY. 2015a. Crystal structure of R-spondin 2 in complex with the ectodomains of its receptors LGR5 and ZNRF3. J. Struct. Biol. 191:2149–55 [Google Scholar]
  180. Zebisch M, Jones EY. 2015b. ZNRF3/RNF43—a direct linkage of extracellular recognition and E3 ligase activity to modulate cell surface signalling. Prog. Biophys. Mol. Biol. 118:3112–18 [Google Scholar]
  181. Zebisch M, Xu Y, Krastev C, MacDonald BT, Chen M. et al. 2013. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat. Commun. 4:2787 [Google Scholar]
  182. Zelina P, Blockus H, Zagar Y, Péres A, Friocourt F. et al. 2014. Signaling switch of the axon guidance receptor Robo3 during vertebrate evolution. Neuron 84:61258–72 [Google Scholar]
  183. Zhang L, Polyansky A, Buck M. 2015. Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLOS ONE 10:4e0121513 [Google Scholar]
  184. Zhang X, Cheong S-M, Amado NG, Reis AH, MacDonald BT. et al. 2015. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev. Cell 32:6719–30 [Google Scholar]
  185. Zipursky SL, Grueber WB. 2013. The molecular basis of self-avoidance. Annu. Rev. Neurosci. 36:547–68 [Google Scholar]
  186. Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M. 2000. Squeezing axons out of the gray matter: a role for Slit and Semaphorin proteins from midline and ventral spinal cord. Cell 102:3363–75 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-125008
Loading
/content/journals/10.1146/annurev-cellbio-111315-125008
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error