1932

Abstract

Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100913-013101
2014-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/30/1/annurev-cellbio-100913-013101.html?itemId=/content/journals/10.1146/annurev-cellbio-100913-013101&mimeType=html&fmt=ahah

Literature Cited

  1. Aggarwal S, Snaidero N, Pahler G, Frey S, Sanchez P. et al. 2013. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLOS Biol. 11:e1001577 [Google Scholar]
  2. Aggarwal S, Yurlova L, Snaidero N, Reetz C, Frey S. et al. 2011. A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Dev. Cell 21:445–56 [Google Scholar]
  3. Aguzzi A, Barres BA, Bennett ML. 2013. Microglia: scapegoat, saboteur, or something else?. Science 339:156–61 [Google Scholar]
  4. Ahrendsen JT, Macklin W. 2013. Signaling mechanisms regulating myelination in the central nervous system. Neurosci. Bull. 29:199–215 [Google Scholar]
  5. Almeida RG, Czopka T, Ffrench-Constant C, Lyons DA. 2011. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138:4443–50 [Google Scholar]
  6. Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL. 2002. Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J. Neurosci. 22:6458–70 [Google Scholar]
  7. Anzini P, Neuberg DH, Schachner M, Nelles E, Willecke K. et al. 1997. Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J. Neurosci. 17:4545–51 [Google Scholar]
  8. Arroyo EJ, Scherer SS. 2000. On the molecular architecture of myelinated fibers. Histochem. Cell Biol. 113:1–18 [Google Scholar]
  9. Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E. et al. 2012. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–47 [Google Scholar]
  10. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A. et al. 2005. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 11:966–72 [Google Scholar]
  11. Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R. et al. 2009. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132:465–81 [Google Scholar]
  12. Bakhti M, Snaidero N, Schneider D, Aggarwal S, Mobius W. et al. 2013. Loss of electrostatic cell-surface repulsion mediates myelin membrane adhesion and compaction in the central nervous system. Proc. Natl. Acad. Sci. USA 110:3143–48 [Google Scholar]
  13. Bakiri Y, Karadottir R, Cossell L, Attwell D. 2011. Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum. J. Physiol. 589:559–73 [Google Scholar]
  14. Barbarese E, Brumwell C, Kwon S, Cui H, Carson JH. 1999. RNA on the road to myelin. J. Neurocytol. 28:263–70 [Google Scholar]
  15. Barca-Mayo O, Lu QR. 2012. Fine-tuning oligodendrocyte development by microRNAs. Front. Neurosci. 6:13 [Google Scholar]
  16. Baron W, Hoekstra D. 2010. On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett. 584:1760–70 [Google Scholar]
  17. Barrette B, Nave KA, Edgar JM. 2013. Molecular triggers of neuroinflammation in mouse models of demyelinating diseases. Biol. Chem. 394:1571–81 [Google Scholar]
  18. Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A. et al. 2011. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc. Natl. Acad. Sci. USA 108:E952–61 [Google Scholar]
  19. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8:1148–50 [Google Scholar]
  20. Bermingham JR Jr, Scherer SS, O'Connell S, Arroyo E, Kalla KA. et al. 1996. Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev. 10:1751–62 [Google Scholar]
  21. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F. et al. 2013. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158 [Google Scholar]
  22. Biname F, Sakry D, Dimou L, Jolivel V, Trotter J. 2013. NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J. Neurosci. 33:10858–74 [Google Scholar]
  23. Bizzozero OA, Bixler HA, Davis JD, Espinosa A, Messier AM. 2001. Chemical deacylation reduces the adhesive properties of proteolipid protein and leads to decompaction of the myelin sheath. J. Neurochem. 76:1129–41 [Google Scholar]
  24. Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H. et al. 2010. Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci. 13:310–18 [Google Scholar]
  25. Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T. et al. 2008. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:581–95 [Google Scholar]
  26. Brockschnieder D, Sabanay H, Riethmacher D, Peles E. 2006. Ermin, a myelinating oligodendrocyte-specific protein that regulates cell morphology. J. Neurosci. 26:757–62 [Google Scholar]
  27. Brosius Lutz A, Barres BA. 2014. Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev. Cell 28:7–17 [Google Scholar]
  28. Bugiani M, Boor I, Powers JM, Scheper GC, van der Knaap MS. 2010. Leukoencephalopathy with vanishing white matter: a review. J. Neuropathol. Exp. Neurol. 69:987–96 [Google Scholar]
  29. Bunge RP. 1968. Glial cells and the central myelin sheath. Physiol. Rev. 48:197–251 [Google Scholar]
  30. Buser AM, Erne B, Werner HB, Nave KA, Schaeren-Wiemers N. 2009. The septin cytoskeleton in myelinating glia. Mol. Cell. Neurosci. 40:156–66 [Google Scholar]
  31. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL. et al. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28:264–78 [Google Scholar]
  32. Capani F, Ellisman MH, Martone ME. 2001. Filamentous actin is concentrated in specific subpopulations of neuronal and glial structures in rat central nervous system. Brain Res. 923:1–11 [Google Scholar]
  33. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M. et al. 2009. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–23 [Google Scholar]
  34. Chan JR, Jolicoeur C, Yamauchi J, Elliott J, Fawcett JP. et al. 2006. The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314:832–36 [Google Scholar]
  35. Chan JR, Watkins TA, Cosgaya JM, Zhang C, Chen L. et al. 2004. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43:183–91 [Google Scholar]
  36. Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C. et al. 2000. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc. Natl. Acad. Sci. USA 97:7585–90 [Google Scholar]
  37. Chavada G, Willison HJ. 2012. Autoantibodies in immune-mediated neuropathies. Curr. Opin. Neurol. 25:550–55 [Google Scholar]
  38. Chen Y, Wu H, Wang S, Koito H, Li J. et al. 2009. The oligodendrocyte-specific G protein–coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat. Neurosci. 12:1398–406 [Google Scholar]
  39. Chong SY, Rosenberg SS, Fancy SP, Zhao C, Shen YA. et al. 2012. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proc. Natl. Acad. Sci. USA 109:1299–304Describes that, employing myelin-associated inhibitors, neighboring myelin segments segregate laterally to compete for axonal surface. [Google Scholar]
  40. Chrast R, Saher G, Nave KA, Verheijen MH. 2011. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. J. Lipid Res. 52:419–34 [Google Scholar]
  41. Coetzee T, Fujita N, Dupree J, Shi R, Blight A. et al. 1996. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–19 [Google Scholar]
  42. Colman DR, Kreibich G, Frey AB, Sabatini DD. 1982. Synthesis and incorporation of myelin polypeptides into CNS myelin. J. Cell Biol. 95:598–608 [Google Scholar]
  43. Cosgaya JM, Chan JR, Shooter EM. 2002. The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298:1245–48 [Google Scholar]
  44. Court FA, Hendriks WT, MacGillavry HD, Alvarez J, van Minnen J. 2008. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci. 28:11024–29 [Google Scholar]
  45. Court FA, Hewitt JE, Davies K, Patton BL, Uncini A. et al. 2009. A laminin-2, dystroglycan, utrophin axis is required for compartmentalization and elongation of myelin segments. J. Neurosci. 29:3908–19 [Google Scholar]
  46. Czopka T, Ffrench-Constant C, Lyons DA. 2013. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25:599–609 [Google Scholar]
  47. Dagley LF, White CA, Liao Y, Shi W, Smyth GK. et al. 2014. Quantitative proteomic profiling reveals novel region-specific markers in the adult mouse brain. Proteomics 14:241–61 [Google Scholar]
  48. de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. 2012. Systematic approaches to central nervous system myelin. Cell Mol. Life Sci. 69:2879–94 [Google Scholar]
  49. de Monasterio-Schrader P, Patzig J, Mobius W, Barrette B, Wagner TL. et al. 2013. Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2. Glia 61:1832–47 [Google Scholar]
  50. de Waegh SM, Lee VM, Brady ST. 1992. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–63 [Google Scholar]
  51. Depienne C, Bugiani M, Dupuits C, Galanaud D, Touitou V. et al. 2013. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol. 12:659–68 [Google Scholar]
  52. Derfuss T, Parikh K, Velhin S, Braun M, Mathey E. et al. 2009. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc. Natl. Acad. Sci. USA 106:8302–7 [Google Scholar]
  53. Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B. et al. 2013. A regenerative approach to the treatment of multiple sclerosis. Nature 502:327–32 [Google Scholar]
  54. Devaux J, Gow A. 2008. Tight junctions potentiate the insulative properties of small CNS myelinated axons. J. Cell Biol. 183:909–21 [Google Scholar]
  55. Eckhardt M. 2008. The role and metabolism of sulfatide in the nervous system. Mol. Neurobiol. 37:93–103 [Google Scholar]
  56. Edgar JM, McLaughlin M, Werner HB, McCulloch MC, Barrie JA. et al. 2009. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia 57:1815–24 [Google Scholar]
  57. Edgar JM, McLaughlin M, Yool D, Zhang SC, Fowler JH. et al. 2004. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J. Cell Biol. 166:121–31 [Google Scholar]
  58. Edgar N, Sibille E. 2012. A putative functional role for oligodendrocytes in mood regulation. Transl. Psychiatry 2:e109 [Google Scholar]
  59. Edvardson S, Hama H, Shaag A, Gomori JM, Berger I. et al. 2008. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am. J. Hum. Genet. 83:643–48 [Google Scholar]
  60. Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC. et al. 2009. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–85 [Google Scholar]
  61. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. 2011. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLOS ONE 6:e26317 [Google Scholar]
  62. Etienne-Manneville S. 2008. Polarity proteins in glial cell functions. Curr. Opin. Neurobiol. 18:488–94 [Google Scholar]
  63. Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH. 2011. Myelin regeneration: a recapitulation of development?. Annu. Rev. Neurosci. 34:21–43 [Google Scholar]
  64. Feltri ML, Graus Porta D, Previtali SC, Nodari A, Migliavacca B. et al. 2002. Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons. J. Cell Biol. 156:199–209 [Google Scholar]
  65. Ferguson B, Matyszak MK, Esiri MM, Perry VH. 1997. Axonal damage in acute multiple sclerosis lesions. Brain 120:Pt. 3393–99 [Google Scholar]
  66. Fewou SN, Fernandes A, Stockdale K, Francone VP, Dupree JL. et al. 2010. Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids. J. Neurochem. 112:599–610 [Google Scholar]
  67. Fewou SN, Ramakrishnan H, Bussow H, Gieselmann V, Eckhardt M. 2007. Down-regulation of polysialic acid is required for efficient myelin formation. J. Biol. Chem. 282:16700–11 [Google Scholar]
  68. Fields RD. 2008. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31:361–70 [Google Scholar]
  69. Filbin MT. 2003. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4:703–13 [Google Scholar]
  70. Filbin MT, Walsh FS, Trapp BD, Pizzey JA, Tennekoon GI. 1990. Role of myelin P0 protein as a homophilic adhesion molecule. Nature 344:871–72 [Google Scholar]
  71. Finzsch M, Schreiner S, Kichko T, Reeh P, Tamm ER. et al. 2010. Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J. Cell Biol. 189:701–12 [Google Scholar]
  72. Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S. et al. 2013. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLOS Biol. 11:e1001604 [Google Scholar]
  73. Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS. et al. 2012. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–21Describes how mature oligodendrocytes support axonal integrity with glycolysis products, studied by oligodendrocytes that lack mitochondrial respiration. [Google Scholar]
  74. Furusho M, Dupree JL, Nave KA, Bansal R. 2012. Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. J. Neurosci. 32:6631–41 [Google Scholar]
  75. Furusho M, Kaga Y, Ishii A, Hebert JM, Bansal R. 2011. Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J. Neurosci. 31:5055–66 [Google Scholar]
  76. Gazzerro E, Baldassari S, Giacomini C, Musante V, Fruscione F. et al. 2012. Hyccin, the molecule mutated in the leukodystrophy hypomyelination and congenital cataract (HCC), is a neuronal protein. PLOS ONEe32180
  77. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL. et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:61831252304 [Google Scholar]
  78. Giese KP, Martini R, Lemke G, Soriano P, Schachner M. 1992. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71:565–76 [Google Scholar]
  79. Gieselmann V, Krageloh-Mann I. 2010. Metachromatic leukodystrophy: an update. Neuropediatrics 41:1–6 [Google Scholar]
  80. Gitik M, Liraz-Zaltsman S, Oldenborg PA, Reichert F, Rotshenker S. 2011. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-alpha) on phagocytes. J. Neuroinflammation 8:24 [Google Scholar]
  81. Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I. et al. 2010. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30:8953–64 [Google Scholar]
  82. Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T. et al. 2012. Genetic disruption of Pten in a novel mouse model of tomaculous neuropathy. EMBO Mol. Med. 4:486–99 [Google Scholar]
  83. Golan N, Kartvelishvily E, Spiegel I, Salomon D, Sabanay H. et al. 2013. Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J. Neurosci. 33:10950–61 [Google Scholar]
  84. Gould RM. 1977. Incorporation of glycoproteins into peripheral nerve myelin. J. Cell Biol. 75:326–38 [Google Scholar]
  85. Gould RM, Dawson RM. 1976. Incorporation of newly formed lecithin into peripheral nerve myelin. J. Cell Biol. 68:480–96 [Google Scholar]
  86. Gow A, Southwood CM, Li JS, Pariali M, Riordan GP. et al. 1999. CNS myelin and Sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99:649–59 [Google Scholar]
  87. Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C. et al. 1998. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–13 [Google Scholar]
  88. Grimsey N, Lin H, Trejo J. 2014. Endosomal signaling by protease-activated receptors. J. Methods Enzymol. 535:389–401 [Google Scholar]
  89. Grossmann KS, Wende H, Paul FE, Cheret C, Garratt AN. et al. 2009. The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development. Proc. Natl. Acad. Sci. USA 106:16704–9 [Google Scholar]
  90. Hagemeyer N, Goebbels S, Papiol S, Kastner A, Hofer S. et al. 2012. A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol. Med. 4:528–39Reports that reduced expression of CNP causes symptoms of depression upon aging in humans and mice. [Google Scholar]
  91. Hahn AF, Ainsworth PJ, Bolton CF, Bilbao JM, Vallat JM. 2001. Pathological findings in the X-linked form of Charcot-Marie-Tooth disease: a morphometric and ultrastructural analysis. Acta Neuropathol. 101:129–39 [Google Scholar]
  92. Hammond TR, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B. et al. 2014. Astrocyte-derived endothelin-1 inhibits remyelination through Notch activation. Neuron 81:588–602 [Google Scholar]
  93. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV. et al. 2008. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–81 [Google Scholar]
  94. Harauz G, Ladizhansky V, Boggs JM. 2009. Structural polymorphism and multifunctionality of myelin basic protein. Biochemistry 48:8094–104 [Google Scholar]
  95. Harlow DE, Macklin WB. 2014. Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp. Neurol. 251:39–46 [Google Scholar]
  96. Harris JJ, Attwell D. 2012. The energetics of CNS white matter. J. Neurosci. 32:356–71Calculated the theoretical energy balance of a white matter tract, suggesting that myelin does not save energy when all costs are considered. [Google Scholar]
  97. Hartline DK, Colman DR. 2007. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17:R29–35 [Google Scholar]
  98. Hasse B, Bosse F, Muller HW. 2002. Proteins of peripheral myelin are associated with glycosphingolipid/cholesterol-enriched membranes. J. Neurosci. Res. 69:227–32 [Google Scholar]
  99. He Y, Dupree J, Wang J, Sandoval J, Li J. et al. 2007. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55:217–30 [Google Scholar]
  100. Henneke M, Diekmann S, Ohlenbusch A, Kaiser J, Engelbrecht V. et al. 2009. RNASET2-deficient cystic leukoencephalopathy resembles congenital cytomegalovirus brain infection. Nat. Genet. 41:773–75 [Google Scholar]
  101. Hildebrand C, Bowe CM, Remahl IN. 1994. Myelination and myelin sheath remodelling in normal and pathological PNS nerve fibres. Prog. Neurobiol. 43:85–141 [Google Scholar]
  102. Hildebrand C, Remahl S, Persson H, Bjartmar C. 1993. Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40:319–84 [Google Scholar]
  103. Hoftberger R, Fink S, Aboul-Enein F, Botond G, Olah J. et al. 2010. Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia 58:1847–57 [Google Scholar]
  104. Hu X, Hicks CW, He W, Wong P, Macklin WB. et al. 2006. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9:1520–25 [Google Scholar]
  105. Hughes EG, Kang SH, Fukaya M, Bergles DE. 2013. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16:668–76Reports that OPCs in adult brains are dynamic; they constantly migrate and extend and retract their processes. [Google Scholar]
  106. Huynh JL, Garg P, Thin TH, Yoo S, Dutta R. et al. 2014. Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat. Neurosci. 17:121–30 [Google Scholar]
  107. Ip CW, Kroner A, Bendszus M, Leder C, Kobsar I. et al. 2006. Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J. Neurosci. 26:8206–16 [Google Scholar]
  108. Ip CW, Kroner A, Crocker PR, Nave KA, Martini R. 2007. Sialoadhesin deficiency ameliorates myelin degeneration and axonopathic changes in the CNS of PLP overexpressing mice. Neurobiol. Dis. 25:105–11 [Google Scholar]
  109. Jahn O, Tenzer S, Bartsch N, Patzig J, Werner HB. 2013. Myelin proteome analysis: methods and implications for the myelin cytoskeleton. Neuromethods 79:335–53 [Google Scholar]
  110. Jahn O, Tenzer S, Werner HB. 2009. Myelin proteomics: molecular anatomy of an insulating sheath. Mol. Neurobiol. 40:55–72 [Google Scholar]
  111. Jalil MA, Begum L, Contreras L, Pardo B, Iijima M. et al. 2005. Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J. Biol. Chem. 280:31333–39 [Google Scholar]
  112. Jessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6:671–82 [Google Scholar]
  113. Jessen KR, Mirsky R, Morgan L. 1991. Role of cyclic AMP and proliferation controls in Schwann cell differentiation. Ann. N.Y. Acad. Sci. 633:78–89 [Google Scholar]
  114. Jin F, Dong B, Georgiou J, Jiang Q, Zhang J. et al. 2011. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 138:1329–37 [Google Scholar]
  115. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW. et al. 2013. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16:571–79 [Google Scholar]
  116. Kaplan MR, Meyer-Franke A, Lambert S, Bennett V, Duncan ID. et al. 1997. Induction of sodium channel clustering by oligodendrocytes. Nature 386:724–28 [Google Scholar]
  117. Kassmann CM. 2014. Myelin peroxisomes: essential organelles for the maintenance of white matter in the nervous system. Biochimie 98:111–18 [Google Scholar]
  118. Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A. et al. 2007. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet. 39:969–76 [Google Scholar]
  119. Kaul R, Gao GP, Balamurugan K, Matalon R. 1993. Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat. Genet. 5:118–23 [Google Scholar]
  120. Kegel L, Jaegle M, Driegen S, Aunin E, Leslie K. et al. 2014. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination. Development 141:1749–56 [Google Scholar]
  121. Keller TA, Just MA. 2009. Altering cortical connectivity: remediation-induced changes in the white matter of poor readers. Neuron 64:624–31 [Google Scholar]
  122. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. 2006. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9:173–79 [Google Scholar]
  123. Kidd GJ, Andrews SB, Trapp BD. 1994. Organization of microtubules in myelinating Schwann cells. J. Neurocytol. 23:801–10 [Google Scholar]
  124. Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D. et al. 2006. WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J. Neurosci. 26:5849–59 [Google Scholar]
  125. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ. et al. 2006. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat. Neurosci. 9:1506–11 [Google Scholar]
  126. Kirschner DA, Ganser AL. 1980. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283:207–10 [Google Scholar]
  127. Kolodziejczyk K, Saab AS, Nave KA, Attwell D. 2010. Why do oligodendrocyte lineage cells express glutamate receptors?. F1000 Biol. Rep. 2:57 [Google Scholar]
  128. Kotter MR, Li WW, Zhao C, Franklin RJ. 2006. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26:328–32 [Google Scholar]
  129. Kotter MR, Stadelmann C, Hartung HP. 2011. Enhancing remyelination in disease: Can we wrap it up?. Brain 134:1882–900 [Google Scholar]
  130. Krämer-Albers E-M, Bretz N, Tenzer S, Winterstein C, Möbius W. et al. 2007. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons?. Proteomics Clin. Appl. 1:1446–61 [Google Scholar]
  131. Krämer-Albers EM, White R. 2011. From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell. Mol. Life Sci. 68:2003–12 [Google Scholar]
  132. La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML. et al. 2011. TACE (ADAM17) inhibits Schwann cell myelination. Nat. Neurosci. 14:857–65 [Google Scholar]
  133. Laquerriere A, Maluenda J, Camus A, Fontenas L, Dieterich K. et al. 2014. Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects. Hum. Mol. Genet. 23:2279–89 [Google Scholar]
  134. Larson TA, Gordon TN, Lau HE, Parichy DM. 2010. Defective adult oligodendrocyte and Schwann cell development, pigment pattern, and craniofacial morphology in puma mutant zebrafish having an alpha tubulin mutation. Dev. Biol. 346:296–309 [Google Scholar]
  135. Lasiene J, Matsui A, Sawa Y, Wong F, Horner PJ. 2009. Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 8:201–13 [Google Scholar]
  136. Lee AG. 2001. Myelin: delivery by raft. Curr. Biol. 11:R60–62 [Google Scholar]
  137. Lee J, Gravel M, Zhang R, Thibault P, Braun PE. 2005. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J. Cell Biol. 170:661–73 [Google Scholar]
  138. Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH. et al. 2012. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat. Methods 9:917–22 [Google Scholar]
  139. Lee X, Yang Z, Shao Z, Rosenberg SS, Levesque M. et al. 2007. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J. Neurosci. 27:220–25 [Google Scholar]
  140. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH. et al. 2012. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–48 [Google Scholar]
  141. Leegwater PA, Yuan BQ, van der Steen J, Mulders J, Konst AA. et al. 2001. Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. Am. J. Hum. Genet. 68:831–38 [Google Scholar]
  142. Lenz PH, Hartline DK, Davis AD. 2000. The need for speed. I. Fast reactions and myelinated axons in copepods. J. Comp. Physiol. A 186:337–45 [Google Scholar]
  143. Li C, Tropak MB, Gerlai R, Clapoff S, Abramow-Newerly W. et al. 1994. Myelination in the absence of myelin-associated glycoprotein. Nature 369:747–50 [Google Scholar]
  144. Li H, Richardson WD. 2008. The evolution of Olig genes and their roles in myelination. Neuron Glia Biol. 4:129–35 [Google Scholar]
  145. Liu J, Casaccia P. 2010. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci. 33:193–201 [Google Scholar]
  146. Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D. et al. 2012. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15:1621–23Reports that the social environment can modulate myelin plasticity in adult mice via chromatin remodeling. [Google Scholar]
  147. Locatelli G, Wortge S, Buch T, Ingold B, Frommer F. et al. 2012. Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat. Neurosci. 15:543–50 [Google Scholar]
  148. Lopez-Hernandez T, Ridder MC, Montolio M, Capdevila-Nortes X, Polder E. et al. 2011. Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am. J. Hum. Genet. 88:422–32 [Google Scholar]
  149. Lopez-Verrilli MA, Picou F, Court FA. 2013. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61:1795–806 [Google Scholar]
  150. Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA. et al. 2013. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLOS Biol. 11:e1001743 [Google Scholar]
  151. Lunn KF, Baas PW, Duncan ID. 1997. Microtubule organization and stability in the oligodendrocyte. J. Neurosci. 17:4921–32 [Google Scholar]
  152. Lyons DA, Naylor SG, Scholze A, Talbot WS. 2009. Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons. Nat. Genet. 41:854–58 [Google Scholar]
  153. Lyons DA, Pogoda HM, Voas MG, Woods IG, Diamond B. et al. 2005. erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr. Biol. 15:513–24 [Google Scholar]
  154. Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–60 [Google Scholar]
  155. Manrique-Hoyos N, Jurgens T, Gronborg M, Kreutzfeldt M, Schedensack M. et al. 2012. Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann. Neurol. 71:227–44 [Google Scholar]
  156. Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL. 2006. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53:372–81 [Google Scholar]
  157. Martini R, Fischer S, Lopez-Vales R, David S. 2008. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 56:1566–77 [Google Scholar]
  158. Martini R, Mohajeri MH, Kasper S, Giese KP, Schachner M. 1995. Mice doubly deficient in the genes for P0 and myelin basic protein show that both proteins contribute to the formation of the major dense line in peripheral nerve myelin. J. Neurosci. 15:4488–95 [Google Scholar]
  159. Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Harris LW, Bahn S. 2011. Proteomic technologies for biomarker studies in psychiatry: advances and needs. Int. Rev. Neurobiol. 101:65–94 [Google Scholar]
  160. Masaki T, Qu J, Cholewa-Waclaw J, Burr K, Raaum R, Rambukkana A. 2013. Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 152:51–67 [Google Scholar]
  161. Mathews ES, Mawdsley DJ, Walker M, Hines JH, Pozzoli M, Appel B. 2014. Mutation of 3-hydroxy-3-methylglutaryl CoA synthase I reveals requirements for isoprenoid and cholesterol synthesis in oligodendrocyte migration arrest, axon wrapping, and myelin gene expression. J. Neurosci. 34:3402–12 [Google Scholar]
  162. Maxfield FR, van Meer G. 2010. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 22:422–9 [Google Scholar]
  163. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM. 2005. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309:2222–26 [Google Scholar]
  164. Mersmann N, Tkachev D, Jelinek R, Roth PT, Mobius W. et al. 2011. Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease. PLOS ONE 6:e20336 [Google Scholar]
  165. Meyer zu Horste G, Hartung HP, Kieseier BC. 2007. From bench to bedside: experimental rationale for immune-specific therapies in the inflamed peripheral nerve. Nat. Clin. Pract. Neurol. 3:198–211 [Google Scholar]
  166. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B. et al. 2004. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–3 [Google Scholar]
  167. Mignot C, Boespflug-Tanguy O, Gelot A, Dautigny A, Pham-Dinh D, Rodriguez D. 2004. Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cell Mol. Life Sci. 61:369–85 [Google Scholar]
  168. Min Y, Kristiansen K, Boggs JM, Husted C, Zasadzinski JA, Israelachvili J. 2009. Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Proc. Natl. Acad. Sci. USA 106:3154–59 [Google Scholar]
  169. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM. et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16:1211–18 [Google Scholar]
  170. Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW. 2007. Imaging axonal transport of mitochondria in vivo. Nat. Methods 4:559–61 [Google Scholar]
  171. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B. 2013. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience Epub ahead of print; doi: 10.1016/j.neuroscience.2013.11.029
  172. Möbius W, Patzig J, Nave KA, Werner HB. 2008. Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. Neuron Glia Biol. 4:111–27 [Google Scholar]
  173. Mogha A, Benesh AE, Patra C, Engel FB, Schoneberg T. et al. 2013. Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J. Neurosci. 33:17976–85 [Google Scholar]
  174. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR. et al. 2009. A G protein–coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–5 [Google Scholar]
  175. Monk KR, Oshima K, Jors S, Heller S, Talbot WS. 2011. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138:2673–80 [Google Scholar]
  176. Morato L, Galino J, Ruiz M, Calingasan NY, Starkov AA. et al. 2013. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. Brain 136:2432–43 [Google Scholar]
  177. Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R. et al. 1993. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361:726–30 [Google Scholar]
  178. Müller C, Bauer NM, Schäfer I, White R. 2013. Making myelin basic protein: from mRNA transport to localized translation. Front. Cell. Neurosci. 7:169 [Google Scholar]
  179. Musse AA, Gao W, Homchaudhuri L, Boggs JM, Harauz G. 2008. Myelin basic protein as a “PI(4,5)P2-modulin”: a new biological function for a major central nervous system protein. Biochemistry 47:10372–82 [Google Scholar]
  180. Myllykoski M, Raasakka A, Han H, Kursula P. 2012. Myelin 2′,3′-cyclic nucleotide 3′-phosphodiesterase: active-site ligand binding and molecular conformation. PLOS ONE 7:e32336 [Google Scholar]
  181. Namboodiri AM, Peethambaran A, Mathew R, Sambhu PA, Hershfield J. et al. 2006. Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol. Cell. Endocrinol. 252:216–23 [Google Scholar]
  182. Nave KA. 2010. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 11:275–83 [Google Scholar]
  183. Nawaz S, Kippert A, Saab A, Werner HB, Lang T. et al. 2009. Phosphatidylinositol (4,5) bisphosphate regulates membrane targeting of myelin basic protein. J. Neurosci. 29:4794–807 [Google Scholar]
  184. Nawaz S, Schweitzer J, Jahn O, Werner HB. 2013. Molecular evolution of myelin basic protein, an abundant structural myelin component. Glia 61:1364–77 [Google Scholar]
  185. Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J. et al. 2011. Specific functions for ERK/MAPK signaling during PNS development. Neuron 69:91–105 [Google Scholar]
  186. Nguyen MV, Felice CA, Du F, Covey MV, Robinson JK. et al. 2013. Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J. Neurosci. 33:18764–74 [Google Scholar]
  187. Nguyen T, Mehta NR, Conant K, Kim KJ, Jones M. et al. 2009. Axonal protective effects of the myelin-associated glycoprotein. J. Neurosci. 29:630–37 [Google Scholar]
  188. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M. et al. 2011. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17:495–99 [Google Scholar]
  189. Norton WT, Poduslo SE. 1973a. Myelination in rat brain: changes in myelin composition during brain maturation. J. Neurochem. 21:759–73 [Google Scholar]
  190. Norton WT, Poduslo SE. 1973b. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749–57 [Google Scholar]
  191. Novak N, Bar V, Sabanay H, Frechter S, Jaegle M. et al. 2011. N-WASP is required for membrane wrapping and myelination by Schwann cells. J. Cell Biol. 192:243–50 [Google Scholar]
  192. Ogawa Y, Rasband MN. 2009. Proteomic analysis of optic nerve lipid rafts reveals new paranodal proteins. J. Neurosci. Res. 87:3502–10 [Google Scholar]
  193. Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A. et al. 2011. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J. Neurosci. 31:7249–58 [Google Scholar]
  194. Oluich LJ, Stratton JA, Xing YL, Ng SW, Cate HS. et al. 2012. Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J. Neurosci. 32:8317–30 [Google Scholar]
  195. Ozcelik M, Cotter L, Jacob C, Pereira JA, Relvas JB. et al. 2010. Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J. Neurosci. 30:4120–31 [Google Scholar]
  196. Patzig J, Dworschak MS, Martens AK, Werner HB. 2014. Septins in the glial cells of the nervous system. Biol. Chem. 395:143–49 [Google Scholar]
  197. Patzig J, Jahn O, Tenzer S, Wichert SP, de Monasterio-Schrader P. et al. 2011. Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J. Neurosci. 31:16369–86 [Google Scholar]
  198. Penton AL, Leonard LD, Spinner NB. 2012. Notch signaling in human development and disease. Semin. Cell Dev. Biol. 23:450–57 [Google Scholar]
  199. Pereira JA, Lebrun-Julien F, Suter U. 2012. Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci. 35:123–34 [Google Scholar]
  200. Peters A. 1961. A radial component of central myelin sheaths. J. Biophys. Biochem. Cytol. 11:733–35 [Google Scholar]
  201. Peters A. 2002. The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol. 31:581–93 [Google Scholar]
  202. Pfeiffer SE, Warrington AE, Bansal R. 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3:191–97 [Google Scholar]
  203. Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K. et al. 2013. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 136:471–82 [Google Scholar]
  204. Piaton G, Aigrot MS, Williams A, Moyon S, Tepavcevic V. et al. 2011. Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 134:1156–67 [Google Scholar]
  205. Pogoda HM, Sternheim N, Lyons DA, Diamond B, Hawkins TA. et al. 2006. A genetic screen identifies genes essential for development of myelinated axons in zebrafish. Dev. Biol. 298:118–31 [Google Scholar]
  206. Pohl HB, Porcheri C, Mueggler T, Bachmann LC, Martino G. et al. 2011. Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J. Neurosci. 31:1069–80 [Google Scholar]
  207. Prukop T, Epplen DB, Nientiedt T, Wichert SP, Fledrich R. et al. 2014. Progesterone antagonist therapy in a Pelizaeus-Merzbacher mouse model. Am. J. Hum. Genet. 94:533–46 [Google Scholar]
  208. Ransohoff RM, Engelhardt B. 2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12:623–35 [Google Scholar]
  209. Readhead C, Popko B, Takahashi N, Shine HD, Saavedra RA. et al. 1987. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48:703–12 [Google Scholar]
  210. Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C. 1997. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389:725–30 [Google Scholar]
  211. Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. 2011. Regulation of oligodendrocyte development and myelination by glucose and lactate. J. Neurosci. 31:538–48 [Google Scholar]
  212. Roach A, Takahashi N, Pravtcheva D, Ruddle F, Hood L. 1985. Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42:149–55 [Google Scholar]
  213. Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H. et al. 2003. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12:1881–95 [Google Scholar]
  214. Rosenberg SS, Kelland EE, Tokar E, De la Torre AR, Chan JR. 2008. The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc. Natl. Acad. Sci. USA 105:14662–67 [Google Scholar]
  215. Rosenbluth J, Nave KA, Mierzwa A, Schiff R. 2006. Subtle myelin defects in PLP-null mice. Glia 54:172–82 [Google Scholar]
  216. Rosenbluth J, Schiff R, Lam P. 2009. Effects of osmolality on PLP-null myelin structure: implications re axon damage. Brain Res. 1253:191–97 [Google Scholar]
  217. Rosetti CM, Maggio B, Oliveira RG. 2008. The self-organization of lipids and proteins of myelin at the membrane interface. Molecular factors underlying the microheterogeneity of domain segregation. Biochim. Biophys. Acta 1778:1665–75 [Google Scholar]
  218. Roussos P, Haroutunian V. 2014. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front. Cell. Neurosci. 8:5 [Google Scholar]
  219. Ruckh JM, Zhao JW, Shadrach JL, van Wijngaarden P, Rao TN. et al. 2012. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10:196–103Shows that blood-derived macrophages can override the remyelination-hostile environment of demyelinating CNS lesions. [Google Scholar]
  220. Ruskamo S, Chukhlieb M, Vahokoski J, Bhargav SP, Liang F. et al. 2012. Juxtanodin is an intrinsically disordered F-actin-binding protein. Sci. Rep. 2:899 [Google Scholar]
  221. Ruskamo S, Yadav RP, Sharma S, Lehtimaki M, Laulumaa S. et al. 2014. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. Acta Crystallogr. D 70:165–76 [Google Scholar]
  222. Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R. et al. 2005. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8:468–75 [Google Scholar]
  223. Saher G, Quintes S, Mobius W, Wehr MC, Kramer-Albers EM. et al. 2009. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J. Neurosci. 29:6094–104 [Google Scholar]
  224. Saher G, Rudolphi F, Corthals K, Ruhwedel T, Schmidt KF. et al. 2012. Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet. Nat. Med. 18:1130–35 [Google Scholar]
  225. Salzer JL, Brophy PJ, Peles E. 2008. Molecular domains of myelinated axons in the peripheral nervous system. Glia 56:1532–40 [Google Scholar]
  226. Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J. et al. 2013. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33:19499–503 [Google Scholar]
  227. Sanchez-Abarca LI, Tabernero A, Medina JM. 2001. Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36:321–29 [Google Scholar]
  228. Saporta MA, Shy ME. 2013. Inherited peripheral neuropathies. Neurol. Clin. 31:597–619 [Google Scholar]
  229. Saravanan K, Schaeren-Wiemers N, Klein D, Sandhoff R, Schwarz A. et al. 2004. Specific downregulation and mistargeting of the lipid raft-associated protein MAL in a glycolipid storage disorder. Neurobiol. Dis. 16:396–406 [Google Scholar]
  230. Saugier-Veber P, Munnich A, Bonneau D, Rozet JM, Le Merrer M. et al. 1994. X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat. Genet. 6:257–62 [Google Scholar]
  231. Schaeren-Wiemers N, Bonnet A, Erb M, Erne B, Bartsch U. et al. 2004. The raft-associated protein MAL is required for maintenance of proper axon-glia interactions in the central nervous system. J. Cell Biol. 166:731–42 [Google Scholar]
  232. Scholz J, Klein MC, Behrens TE, Johansen-Berg H. 2009. Training induces changes in white-matter architecture. Nat. Neurosci. 12:1370–71 [Google Scholar]
  233. Sherman DL, Wu LM, Grove M, Gillespie CS, Brophy PJ. 2012. Drp2 and periaxin form Cajal bands with dystroglycan but have distinct roles in Schwann cell growth. J. Neurosci. 32:9419–28 [Google Scholar]
  234. Sierra A, Abiega O, Shahraz A, Neumann H. 2013. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front. Cell. Neurosci. 7:6 [Google Scholar]
  235. Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J. 2000. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J. Cell Biol. 151:143–54 [Google Scholar]
  236. Simpson AH, Gillingwater TH, Anderson H, Cottrell D, Sherman DL. et al. 2013. Effect of limb lengthening on internodal length and conduction velocity of peripheral nerve. J. Neurosci. 33:4536–39 [Google Scholar]
  237. Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R. et al. 2013. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136:147–67 [Google Scholar]
  238. Sloane JA, Vartanian TK. 2007. Myosin Va controls oligodendrocyte morphogenesis and myelination. J. Neurosci. 27:11366–75 [Google Scholar]
  239. Snaidero N, Mobius W, Czopka T, Hekking LH, Mathisen C. et al. 2014. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156:277–90Reports the analysis of CNS myelin biogenesis by modern microscopy tools. [Google Scholar]
  240. Soong BW, Huang YH, Tsai PC, Huang CC, Pan HC. et al. 2013. Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 92:422–30 [Google Scholar]
  241. Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A. 2007. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. 32:187–95 [Google Scholar]
  242. Sparrow N, Manetti ME, Bott M, Fabianac T, Petrilli A. et al. 2012. The actin-severing protein cofilin is downstream of neuregulin signaling and is essential for Schwann cell myelination. J. Neurosci. 32:5284–97 [Google Scholar]
  243. Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D. et al. 2002. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16:165–70 [Google Scholar]
  244. Stroobants S, Gerlach D, Matthes F, Hartmann D, Fogh J. et al. 2011. Intracerebroventricular enzyme infusion corrects central nervous system pathology and dysfunction in a mouse model of metachromatic leukodystrophy. Hum. Mol. Genet. 20:2760–69 [Google Scholar]
  245. Sturrock RR. 1976. Changes in neurologia and myelination in the white matter of aging mice. J. Gerontol. 31:513–22 [Google Scholar]
  246. Suresh S, Wang C, Nanekar R, Kursula P, Edwardson JM. 2010. Myelin basic protein and myelin protein 2 act synergistically to cause stacking of lipid bilayers. Biochemistry 49:3456–63 [Google Scholar]
  247. Suzuki K, Rasband MN. 2008. Molecular mechanisms of node of Ranvier formation. Curr. Opin. Cell Biol. 20:6616–23 [Google Scholar]
  248. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH. et al. 2011. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–23 [Google Scholar]
  249. Swiss VA, Nguyen T, Dugas J, Ibrahim A, Barres B. et al. 2011. Identification of a gene regulatory network necessary for the initiation of oligodendrocyte differentiation. PLOS ONE 6:e18088 [Google Scholar]
  250. Syed YA, Hand E, Mobius W, Zhao C, Hofer M. et al. 2011. Inhibition of CNS remyelination by the presence of semaphorin 3A. J. Neurosci. 31:3719–28 [Google Scholar]
  251. Taft RJ, Vanderver A, Leventer RJ, Damiani SA, Simons C. et al. 2013. Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am. J. Hum. Genet. 92:774–80 [Google Scholar]
  252. Tamnes CK, Ostby Y, Walhovd KB, Westlye LT, Due-Tonnessen P, Fjell AM. 2010. Neuroanatomical correlates of executive functions in children and adolescents: a magnetic resonance imaging (MRI) study of cortical thickness. Neuropsychologia 48:2496–508 [Google Scholar]
  253. Tao Y, Dai P, Liu Y, Marchetto S, Xiong WC. et al. 2009. Erbin regulates NRG1 signaling and myelination. Proc. Natl. Acad. Sci. USA 106:9477–82 [Google Scholar]
  254. Tapinos N, Ohnishi M, Rambukkana A. 2006. ErbB2 receptor tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli. Nat. Med. 12:961–66 [Google Scholar]
  255. Tasaki I. 1939. The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber. Am. J. Physiol. 127:211–27 [Google Scholar]
  256. Tasaki I. 2007. Saltatory conduction. Scholarpedia 2:63354 http://www.scholarpedia.org/article/Saltatory_conduction [Google Scholar]
  257. Taveggia C, Feltri ML, Wrabetz L. 2010. Signals to promote myelin formation and repair. Nat. Rev. Neurol. 6:276–87 [Google Scholar]
  258. Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A. et al. 2008. Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56:284–93 [Google Scholar]
  259. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J. et al. 2005. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681–94 [Google Scholar]
  260. Timmerman V, Clowes VE, Reid E. 2013. Overlapping molecular pathological themes link Charcot-Marie-Tooth neuropathies and hereditary spastic paraplegias. Exp. Neurol. 246:14–25 [Google Scholar]
  261. Tomassy GS, Berger DR, Chen HH, Kasthuri N, Hayworth KJ. et al. 2014. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344:6181319–24 [Google Scholar]
  262. Topilko P, Schneider-Maunoury S, Levi G, Baron-Van Evercooren A, Chennoufi AB. et al. 1994. Krox-20 controls myelination in the peripheral nervous system. Nature 371:796–99 [Google Scholar]
  263. Torvund-Jensen J, Steengaard J, Reimer L, Fihl LB, Laursen LS. 2014. Transport and translation of MBP mRNA is regulated differently by distinct hnRNP proteins. J. Cell Sci. 127:1550–64 [Google Scholar]
  264. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. 1998. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338:278–85 [Google Scholar]
  265. Triolo D, Dina G, Taveggia C, Vaccari I, Porrello E. et al. 2012. Vimentin regulates peripheral nerve myelination. Development 139:1359–67 [Google Scholar]
  266. Tripathi RB, Clarke LE, Burzomato V, Kessaris N, Anderson PN. et al. 2011. Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J. Neurosci. 31:6809–19 [Google Scholar]
  267. Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM. et al. 2004. Mutations in the gene encoding gap junction protein α12 (connexin 46.6) cause Pelizaeus-Merzbacher–like disease. Am. J. Hum. Genet. 75:251–60 [Google Scholar]
  268. van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24 [Google Scholar]
  269. Vavlitou N, Sargiannidou I, Markoullis K, Kyriacou K, Scherer SS, Kleopa KA. 2010. Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy. J. Neuropathol. Exp. Neurol. 69:945–58 [Google Scholar]
  270. Velanac V, Unterbarnscheidt T, Hinrichs W, Gummert MN, Fischer TM. et al. 2012. Bace1 processing of NRG1 type III produces a myelin-inducing signal but is not essential for the stimulation of myelination. Glia 60:203–17 [Google Scholar]
  271. Velumian AA, Samoilova M, Fehlings MG. 2011. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow. Neuroimage 56:27–34 [Google Scholar]
  272. Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Bansal R. et al. 2013. Role of CNPase in the oligodendrocytic extracellular 2′,3′-cAMP-adenosine pathway. Glia 61:1595–606 [Google Scholar]
  273. Vigano F, Mobius W, Gotz M, Dimou L. 2013. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat. Neurosci. 16:1370–72 [Google Scholar]
  274. Wake H, Lee PR, Fields RD. 2011. Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–51 [Google Scholar]
  275. Walko G, Wogenstein KL, Winter L, Fischer I, Feltri ML, Wiche G. 2013. Stabilization of the dystroglycan complex in Cajal bands of myelinating Schwann cells through plectin-mediated anchorage to vimentin filaments. Glia 61:1274–87 [Google Scholar]
  276. Wang JT, Medress ZA, Barres BA. 2012. Axon degeneration: molecular mechanisms of a self-destruction pathway. J. Cell Biol. 196:7–18 [Google Scholar]
  277. Wang SS, Shultz JR, Burish MJ, Harrison KH, Hof PR. et al. 2008. Functional trade-offs in white matter axonal scaling. J. Neurosci. 28:4047–56 [Google Scholar]
  278. Wanner IB, Wood PM. 2002. N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells. J. Neurosci. 22:4066–79 [Google Scholar]
  279. Weng Q, Chen Y, Wang H, Xu X, Yang B. et al. 2012. Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 73:713–28 [Google Scholar]
  280. Werner HB. 2013. Do we have to reconsider the evolutionary emergence of myelin?. Front. Cell. Neurosci. 7:217 [Google Scholar]
  281. Werner HB, Jahn O. 2010. Myelin matters: proteomic insights into white matter disorders. Expert Rev. Proteomics 7:159–64 [Google Scholar]
  282. Werner HB, Kramer-Albers EM, Strenzke N, Saher G, Tenzer S. et al. 2013. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 61:567–86Shows that the cholesterol-associated proteolipids PLP and GPM6B have partly redundant functions in the biogenesis of CNS myelin. [Google Scholar]
  283. Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A. et al. 2007. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J. Neurosci. 27:7717–30 [Google Scholar]
  284. White R, Kramer-Albers EM. 2014. Axon-glia interaction and membrane traffic in myelin formation. Front. Cell. Neurosci. 7:284 [Google Scholar]
  285. Wiame E, Tyteca D, Pierrot N, Collard F, Amyere M. et al. 2010. Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem. J. 425:127–36 [Google Scholar]
  286. Wibom R, Lasorsa FM, Tohonen V, Barbaro M, Sterky FH. et al. 2009. AGC1 deficiency associated with global cerebral hypomyelination. N. Engl. J. Med. 361:489–95 [Google Scholar]
  287. Wiesinger H, Hamprecht B, Dringen R. 1997. Metabolic pathways for glucose in astrocytes. Glia 21:22–34 [Google Scholar]
  288. Wilkins A, Majed H, Layfield R, Compston A, Chandran S. 2003. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J. Neurosci. 23:4967–74 [Google Scholar]
  289. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S. et al. 2006. Control of peripheral nerve myelination by the β-secretase BACE1. Science 314:664–66 [Google Scholar]
  290. Wilson CH, Hartline DK. 2011. Novel organization and development of copepod myelin. II. Nonglial origin. J. Comp. Neurol. 519:3281–305 [Google Scholar]
  291. Winzeler AM, Mandemakers WJ, Sun MZ, Stafford M, Phillips CT, Barres BA. 2011. The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J. Neurosci. 31:6481–92 [Google Scholar]
  292. Woldeyesus MT, Britsch S, Riethmacher D, Xu L, Sonnenberg-Riethmacher E. et al. 1999. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev. 13:2538–48 [Google Scholar]
  293. Wong AW, Xiao J, Kemper D, Kilpatrick TJ, Murray SS. 2013. Oligodendroglial expression of TrkB independently regulates myelination and progenitor cell proliferation. J. Neurosci. 33:4947–57 [Google Scholar]
  294. Wong LJ. 2012. Mitochondrial syndromes with leukoencephalopathies. Semin. Neurol. 32:55–61 [Google Scholar]
  295. Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D'Antonio M. et al. 2009. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 12:839–47 [Google Scholar]
  296. Yin X, Baek RC, Kirschner DA, Peterson A, Fujii Y. et al. 2006. Evolution of a neuroprotective function of central nervous system myelin. J. Cell Biol. 172:469–78 [Google Scholar]
  297. Yin X, Crawford TO, Griffin JW, Tu P, Lee VM. et al. 1998. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J. Neurosci. 18:1953–62 [Google Scholar]
  298. Yoshida M, Colman DR. 1996. Parallel evolution and coexpression of the proteolipid proteins and protein zero in vertebrate myelin. Neuron 16:1115–26 [Google Scholar]
  299. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L. et al. 2013. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–85Reports that, in normal mice, new myelin sheaths are formed by newly generated oligodendrocytes throughout life. [Google Scholar]
  300. Yuen TJ, Johnson KR, Miron VE, Zhao C, Quandt J. et al. 2013. Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. Brain 136:1035–47 [Google Scholar]
  301. Yurlova L, Kahya N, Aggarwal S, Kaiser HJ, Chiantia S. et al. 2011. Self-segregation of myelin membrane lipids in model membranes. Biophys. J. 101:2713–20 [Google Scholar]
  302. Zalc B, Goujet D, Colman D. 2008. The origin of the myelination program in vertebrates. Curr. Biol. 18:R511–12 [Google Scholar]
  303. Zeis T, Schaeren-Wiemers N. 2008. Lame ducks or fierce creatures? The role of oligodendrocytes in multiple sclerosis. J. Mol. Neurosci. 35:91–100 [Google Scholar]
  304. Zenker J, Ziegler D, Chrast R. 2013. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci. 36:8439–49 [Google Scholar]
  305. Zuchero JB, Barres BA. 2013. Intrinsic and extrinsic control of oligodendrocyte development. Curr. Opin. Neurobiol. 23:914–20 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100913-013101
Loading
/content/journals/10.1146/annurev-cellbio-100913-013101
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error