1932

Abstract

Axonal transport is indispensable for the distribution of vesicles, organelles, messenger RNAs (mRNAs), and signaling molecules along the axon. This process is mediated by kinesins and dyneins, molecular motors that bind to cargoes and translocate on microtubule tracks. Tight modulation of motor protein activity is necessary, but little is known about the molecules and mechanisms that regulate transport. Moreover, evidence suggests that transport impairments contribute to the initiation or progression of neurodegenerative diseases, or both, but the mechanisms by which motor activity is affected in disease are unclear. In this review, we discuss some of the physical and biophysical properties that influence motor regulation in healthy neurons. We further discuss the evidence for the role of transport in neurodegeneration, highlighting two pathways that may contribute to transport impairment–dependent disease: genetic mutations or variation, and protein aggregation. Understanding how and when transport parameters change in disease will help delineate molecular mechanisms of neurodegeneration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-022746
2014-05-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biophys/43/1/annurev-biophys-051013-022746.html?itemId=/content/journals/10.1146/annurev-biophys-051013-022746&mimeType=html&fmt=ahah

Literature Cited

  1. Abe N, Cavalli V. 1.  2008. Nerve injury signaling. Curr. Opin. Neurobiol. 18:3276–83 [Google Scholar]
  2. Ally S, Larson AG, Barlan K, Rice SE, Gelfand VI. 2.  2009. Opposite-polarity motors activate one another to trigger cargo transport in live cells. J. Cell Biol. 187:71071–82 [Google Scholar]
  3. Arimura N, Kimura T, Nakamuta S, Taya S, Funahashi Y. 3.  et al. 2009. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell 16:5675–86 [Google Scholar]
  4. Ashkin A, Schutze K, Dziedzic JM, Euteneuer U, Schliwa M. 4.  1990. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:6299346–48 [Google Scholar]
  5. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. 5.  2008. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59:61347–54 [Google Scholar]
  6. Baas PW, Buster DW. 6.  2004. Slow axonal transport and the genesis of neuronal morphology. J. Neurobiol. 58:13–17 [Google Scholar]
  7. Baas PW, Deitch JS, Black MM, Banker GA. 7.  1988. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85:218335–39 [Google Scholar]
  8. Baas PW, Qiang L. 8.  2005. Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol. 15:4183–87 [Google Scholar]
  9. Barkus RV, Klyachko O, Horiuchi D, Dickson BJ, Saxton WM. 9.  2008. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol. Biol. Cell 19:1274–83 [Google Scholar]
  10. Berg HC. 10.  1993. Random Walks in Biology Princeton, NJ: Princeton Univ. Press
  11. Blasius TL, Cai D, Jih GT, Toret CP, Verhey KJ. 11.  2007. Two binding partners cooperate to activate the molecular motor Kinesin-1. J. Cell Biol. 176:111–17 [Google Scholar]
  12. Block-Galarza J, Chase KO, Sapp E, Vaughn KT, Vallee RB. 12.  et al. 1997. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. NeuroReport 8:9–102247–51 [Google Scholar]
  13. Bretteville A, Planel E. 13.  2008. Tau aggregates: toxic, inert, or protective species?. J. Alzheimer's Dis. 14:4431–36 [Google Scholar]
  14. Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. 14.  2012. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp. Brain Res. 217:3–4353–64 [Google Scholar]
  15. Cai D, Leem JY, Greenfield JP, Wang P, Kim BS. 15.  2003. Presenilin-1 regulates intracellular trafficking and cell surface delivery of β-amyloid precursor protein. J. Biol. 278:53446–54 [Google Scholar]
  16. Cai Q, Gerwin C, Sheng ZH. 16.  2005. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J. Cell Biol. 170:6959–69 [Google Scholar]
  17. Calkins MJ, Reddy PH. 17.  2011. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochim. Biophys. Acta 1812:4507–13 [Google Scholar]
  18. Cavalli V, Kujala P, Klumperman J, Goldstein LSB. 18.  2005. Sunday Driver links axonal transport to damage signaling. J. Cell Biol. 168:5775–87 [Google Scholar]
  19. Caviston JP, Holzbaur ELF. 19.  2009. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol. 19:4147–55 [Google Scholar]
  20. Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur ELF. 20.  2007. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl. Acad. Sci. USA 104:2410045–50 [Google Scholar]
  21. Chen Y, Sheng Z-H. 21.  2013. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202:2351–64 [Google Scholar]
  22. Chowdary PD, Che DL, Cui B. 22.  2012. Neurotrophin signaling via long-distance axonal transport. Annu. Rev. Phys. Chem. 63:571–94Outlines neurotrophic signaling at axonal termini and mechanisms of retrograde signal transport. Highlights methodologies to study signal transport, including single-molecule imaging. [Google Scholar]
  23. Chrétien D, Kenney JM, Fuller SD, Wade RH. 23.  1996. Determination of microtubule polarity by cryo-electron microscopy. Structure 4:91031–40 [Google Scholar]
  24. Coleman M. 24.  2005. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6:11889–98 [Google Scholar]
  25. Coleman M. 25.  2011. Molecular signaling: How do axons die?. Adv. Genet. 73:185–217 [Google Scholar]
  26. Colin E, Zala D, Liot G, Rangone H, Borrell-Pagès M. 26.  et al. 2008. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 27:152124–34 [Google Scholar]
  27. Conway L, Wood D, Tüzel E, Ross JL. 27.  2012. Motor transport of self-assembled cargos in crowded environments. Proc. Natl. Acad. Sci. USA 109:5120814–19 [Google Scholar]
  28. Coy DL, Wagenbach M, Howard J. 28.  1999. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274:63667–71 [Google Scholar]
  29. Crimella C, Baschirotto C, Arnoldi A, Tonelli A, Tenderini E. 29.  et al. 2012. Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal Charcot-Marie-Tooth type 2. Clin. Genet. 82:2157–64 [Google Scholar]
  30. Curtis R, Tonra JR, Stark JL, Adryan KM, Park JS. 30.  et al. 1998. Neuronal injury increases retrograde axonal transport of the neurotrophins to spinal sensory neurons and motor neurons via multiple receptor mechanisms. Mol. Cell. Neurosci. 12:3105–18 [Google Scholar]
  31. Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA. 31.  2010. Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3β in primary cultured hippocampal neurons. J. Neurosci. 30:279166–71 [Google Scholar]
  32. Derr ND, Goodman BS, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL. 32.  2012. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338:6107662–65 [Google Scholar]
  33. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A. 33.  et al. 1995. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:51075–81 [Google Scholar]
  34. Dixit R, Ross JL, Goldman YE, Holzbaur ELF. 34.  2008. Differential regulation of dynein and kinesin motor proteins by tau. Science 319:58661086–89 [Google Scholar]
  35. Dotti CG, Sullivan CA, Banker GA. 35.  1988. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8:41454–68 [Google Scholar]
  36. Du F, Zhou Z, Mo ZY, Shi JZ, Chen J, Liang Y. 36.  2006. Mixed macromolecular crowding accelerates the refolding of rabbit muscle creatine kinase: implications for protein folding in physiological environments. J. Mol. Biol. 364:3469–82 [Google Scholar]
  37. Duncan JE, Goldstein LSB. 37.  2006. The genetics of axonal transport and axonal transport disorders. PLoS Genet. 2:9e124 [Google Scholar]
  38. Encalada SE, Szpankowski L, Xia C-H, Goldstein LSB. 38.  2011. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 144:4551–65 [Google Scholar]
  39. Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A. 39.  et al. 1997. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 6:132205–12 [Google Scholar]
  40. Fallesen TL, Macosko JC, Holzwarth G. 40.  2011. Force-velocity relationship for multiple kinesin motors pulling a magnetic bead. Eur. Biophys. J. 40:91071–79 [Google Scholar]
  41. Fichera M, Lo Giudice M, Falco M, Sturnio M, Amata S. 41.  et al. 2004. Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63:61108–10 [Google Scholar]
  42. Fox LM, William CM, Adamowicz DH, Pitstick R, Carlson GA. 42.  et al. 2011. Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model. J. Neuropathol. Exp. Neurol. 70:7588–95 [Google Scholar]
  43. Fu M-M, Holzbaur ELF. 43.  2013. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202:3495–508 [Google Scholar]
  44. Gagliano J, Walb M, Blaker B, Macosko JC, Holzwarth G. 44.  2009. Kinesin velocity increases with the number of motors pulling against viscoelastic drag. Eur. Biophys. J. 39:5801–13 [Google Scholar]
  45. Gennerich A, Schild D. 45.  2006. Finite-particle tracking reveals submicroscopic-size changes of mitochondria during transport in mitral cell dendrites. Phys. Biol. 3:145–53 [Google Scholar]
  46. Gil JM, Rego AC. 46.  2008. Mechanisms of neurodegeneration in Huntington's disease. Eur. J. Neurosci. 27:112803–20 [Google Scholar]
  47. Gindhart JG Jr, Desai CJ, Beushausen S, Zinn K, Goldstein LSB. 47.  1998. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141:2443–54 [Google Scholar]
  48. Glater EE, Megeath LJ, Stowers RS, Schwarz TL. 48.  2006. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173:4545–57 [Google Scholar]
  49. Goldstein AY, Wang X, Schwarz TL. 49.  2008. Axonal transport and the delivery of pre-synaptic components. Curr. Opin. Neurobiol. 18:5495–503 [Google Scholar]
  50. Goldstein LSB. 50.  2012. Axonal transport and neurodegenerative disease: Can we see the elephant?. Prog. Neurobiol. 99:3186–90 [Google Scholar]
  51. Gross SP, Tuma MC, Deacon SW, Serpinskaya AS, Reilein AR, Gelfand VI. 51.  2002. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156:5855–65 [Google Scholar]
  52. Gross SP, Welte MA, Block SM, Wieschaus EF. 52.  2002. Coordination of opposite-polarity microtubule motors. J. Cell Biol. 156:4715–24 [Google Scholar]
  53. Gunawardena S, Goldstein LSB. 53.  2001. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32:3389–401 [Google Scholar]
  54. Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR. 54.  et al. 2003. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:125–40 [Google Scholar]
  55. Gunawardena S, Yang G, Goldstein LSB. 55.  2013. Presenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo. Hum. Mol. Genet. 22:193828–43 [Google Scholar]
  56. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A. 56.  et al. 2003. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:5620808–12 [Google Scholar]
  57. Haghnia M, Cavalli V, Shah SB, Schimmelpfeng K, Brusch R. 57.  et al. 2007. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol. Biol. Cell 18:62081–89 [Google Scholar]
  58. Harrington AW, Ginty DD. 58.  2013. Long-distance retrograde neurotrophic factor signalling in neurons. Nat. Rev. Neurosci. 14:3177–87 [Google Scholar]
  59. Heerssen HM, Pazyra MF, Segal RA. 59.  2004. Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat. Neurosci. 7:6596–604 [Google Scholar]
  60. Hendricks AG, Perlson E, Ross JL, Schroeder HW III, Tokito M, Holzbaur ELF. 60.  2010. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20:8697–702 [Google Scholar]
  61. Hirokawa N. 61.  1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:5350519–26 [Google Scholar]
  62. Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T. 62.  2003. Glutamate and amyloid β-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J. Neurosci. 23:268967–77 [Google Scholar]
  63. Hoffner G, Kahlem P, Djian P. 63.  2002. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with β-tubulin: relevance to Huntington's disease. J. Cell Sci. 115:5941–48 [Google Scholar]
  64. Hollenbeck PJ, Saxton WM. 64.  2005. The axonal transport of mitochondria. J. Cell Sci. 118:235411–19 [Google Scholar]
  65. Hooper C, Killick R, Lovestone S. 65.  2007. The GSK3 hypothesis of Alzheimer's disease. J. Neurochem. 104:61433–39 [Google Scholar]
  66. Horiuchi D, Barkus RV, Pilling AD, Gassman A, Saxton WM. 66.  2005. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr. Biol. 15:232137–41 [Google Scholar]
  67. Howard J. 67.  1997. Molecular motors: structural adaptations to cellular functions. Nature 389:6651561–67 [Google Scholar]
  68. Howard J. 68.  2001. Mechanics of Motor Proteins and the Cytoskeleton Sunderland, MA: Sinauer
  69. Howard J, Hudspeth AJ, Vale RD. 69.  1989. Movement of microtubules by single kinesin molecules. Nature 342:6246154–58 [Google Scholar]
  70. Hua W, Young EC, Fleming ML, Gelles J. 70.  1997. Coupling of kinesin steps to ATP hydrolysis. Nature 388:6640390–93 [Google Scholar]
  71. Huang C-F, Banker G. 71.  2012. The translocation selectivity of the kinesins that mediate neuronal organelle transport. Traffic 13:4549–64 [Google Scholar]
  72. Hunt AJ, Gittes F, Howard J. 72.  1994. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 67:2766–81 [Google Scholar]
  73. Hurd DD, Saxton WM. 73.  1996. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144:31075–85 [Google Scholar]
  74. Inomata H, Nakamura Y, Hayakawa A, Takata H, Suzuki T. 74.  et al. 2003. A scaffold protein JIP-1b enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1. J. Biol. 278:2522946–55 [Google Scholar]
  75. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A. 75.  et al. 2010. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell 142:3387–97 [Google Scholar]
  76. Jolly AL, Gelfand VI. 76.  2011. Bidirectional intracellular transport: utility and mechanism. Biochem. Soc. Trans. 39:51126–30 [Google Scholar]
  77. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LSB. 77.  2001. Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature 414:6864643–48 [Google Scholar]
  78. Kamal A, Stokin GB, Yang Z, Xia C-H, Goldstein LSB. 78.  2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28:2449–59 [Google Scholar]
  79. Kasa P, Papp H, Kovacs I, Forgon M, Penke B, Yamaguchi H. 79.  2000. Human amyloid-β1–42 applied in vivo inhibits the fast axonal transport of proteins in the sciatic nerve of rat. Neuroscience 278:1–2117–19 [Google Scholar]
  80. Kenney AM, Kocsis JD. 80.  1998. Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia in vivo. J. Neurosci. 18:41318–28 [Google Scholar]
  81. Korten T, Nitzsche B, Gell C, Ruhnow F, Leduc C, Diez S. 81.  2011. Fluorescence imaging of single kinesin motors on immobilized microtubules. Methods Mol. Biol. 783:121–37 [Google Scholar]
  82. Koushika SP, Schaefer AM, Vincent R, Willis JH, Bowerman B, Nonet ML. 82.  2004. Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J. Neurosci. 24:163907–16 [Google Scholar]
  83. Kulić IM, Brown AEX, Kim H, Kural C, Blehm B. 83.  et al. 2008. The role of microtubule movement in bidirectional organelle transport. Proc. Natl. Acad. Sci. USA 105:2910011–16 [Google Scholar]
  84. Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR. 84.  2005. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement?. Science 308:57271469–72 [Google Scholar]
  85. LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J. 85.  et al. 2002. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:5715–27 [Google Scholar]
  86. LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP. 86.  et al. 2009. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J. Neurosci. Res. 87:2440–51 [Google Scholar]
  87. Lazarov O, Morfini GA, Pigino G, Gadadhar A, Chen X. 87.  et al. 2007. Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer's disease-linked mutant presenilin 1. J. Neurosci. 27:267011–20 [Google Scholar]
  88. Leduc C, Padberg-Gehle K, Varga V, Helbing D, Diez S, Howard J. 88.  2012. Molecular crowding creates traffic jams of kinesin motors on microtubules. Proc. Natl. Acad. Sci. USA 109:166100–5 [Google Scholar]
  89. Lee EB, Zhang B, Liu K, Greenbaum EA, Doms RW. 89.  et al. 2005. BACE overexpression alters the subcellular processing of APP and inhibits Aβ deposition in vivo. J. Cell Biol. 168:2291–302 [Google Scholar]
  90. Lee W-CM, Yoshihara M, Littleton JT. 90.  2004. Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease. Proc. Natl. Acad. Sci. USA 101:93224–29 [Google Scholar]
  91. Li S-H, Gutekunst C-A, Hersch SM, Li X-J. 91.  1998. Interaction of huntingtin-associated protein with dynactin P150Glued. J. Neurosci. 18:41261–69 [Google Scholar]
  92. Ligon LA, Tokito M, Finklestein JM, Grossman FE, Holzbaur ELF. 92.  2004. A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J. Biol. Chem. 279:1819201–8 [Google Scholar]
  93. Luby-Phelps K, Castle PE, Taylor DL, Lanni F. 93.  1987. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 84:144910–13 [Google Scholar]
  94. Lyman MG, Enquist LW. 94.  2009. Herpesvirus interactions with the host cytoskeleton. J. Virol. 83:52058–66 [Google Scholar]
  95. MacAskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J. 95.  et al. 2009. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:4541–55 [Google Scholar]
  96. Mandelkow E-M, Thies E, Trinczek B, Biernat J, Mandelkow E. 96.  2004. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J. Cell Biol. 167:199–110 [Google Scholar]
  97. Martin M, Iyadurai SJ, Gassman A, Gindhart JG Jr, Hays TS, Saxton WM. 97.  1999. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol. Biol. Cell 10:113717–28 [Google Scholar]
  98. McGuire JR, Rong J, Li S-H, Li X-J. 98.  2005. Interaction of huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J. Biol. Chem. 281:63552–59 [Google Scholar]
  99. Meyhofer E, Howard J. 99.  1995. The force generated by a single kinesin molecule against an elastic load. Proc. Natl. Acad. Sci. USA 92:2574–78 [Google Scholar]
  100. Millecamps S, Julien J-P. 100.  2013. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14:3161–76 [Google Scholar]
  101. Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW. 101.  2007. Imaging axonal transport of mitochondria in vivo. Nat. Methods 4:7559–61 [Google Scholar]
  102. Moore JR, Krementsova EB, Trybus KM, Warshaw DM. 102.  2001. Myosin V exhibits a high duty cycle and large unitary displacement. J. Cell Biol. 155:4625–35 [Google Scholar]
  103. Morel M, Authelet M, Dedecker R, Brion J-P. 103.  2010. Glycogen synthase kinase-3β and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience 167:41044–56 [Google Scholar]
  104. Morel M, Héraud C, Nicaise C, Suain V, Brion J-P. 104.  2012. Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer's disease: implications for axoplasmic transport. Acta Neuropathol. 123:171–84 [Google Scholar]
  105. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST. 105.  2002. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21:3281–93 [Google Scholar]
  106. Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP. 106.  et al. 2004. GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol. Psychiatry 9:5522–30 [Google Scholar]
  107. Muresan Z, Muresan V. 107.  2005. Coordinated transport of phosphorylated amyloid-β precursor protein and c-Jun NH2-terminal kinase–interacting protein-1. J. Cell Biol. 171:4615–25 [Google Scholar]
  108. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R. 108.  et al. 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:71209–20 [Google Scholar]
  109. Neuman KC, Block SM. 109.  2004. Optical trapping. Rev. Sci. Instrum. 75:92787–809 [Google Scholar]
  110. Noble W, Hanger DP, Miller CCJ, Lovestone S. 110.  2013. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 4:83 [Google Scholar]
  111. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M. 111.  2005. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45:5715–26 [Google Scholar]
  112. Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J. 112.  2003. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci. 23:114499–508 [Google Scholar]
  113. Pilling AD, Horiuchi D, Lively CM, Saxton WM. 113.  2006. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17:42057–68 [Google Scholar]
  114. Price RL, Lasek RJ, Katz MJ. 114.  1990. Internal axonal cytoarchitecture is shaped locally by external compressive forces. Brain Res. 530:2205–14 [Google Scholar]
  115. Puls I, Jonnakuty C, LaMonte BH, Holzbaur ELF, Tokito M. 115.  et al. 2003. Mutant dynactin in motor neuron disease. Nat. Genet. 33:4455–56 [Google Scholar]
  116. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S. 116.  et al. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71:51189–94 [Google Scholar]
  117. Reis GF, Yang G, Szpankowski L, Weaver C, Shah SB. 117.  et al. 2012. Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila. Mol. Biol. Cell 23:91700–14 [Google Scholar]
  118. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH. 118.  et al. 2007. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316:5825750–54 [Google Scholar]
  119. Rodrigues EM, Weissmiller AM, Goldstein LSB. 119.  2012. Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects. Hum. Mol. Genet. 21:214587–601 [Google Scholar]
  120. Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, Nyenya F, Anderton BH, Hanger DP. 120.  2013. Tau phosphorylation affects its axonal transport and degradation. Neurobiol. Aging 34:92146–57 [Google Scholar]
  121. Rogers SL, Tint IS, Gelfand VI. 121.  1998. In vitro motility assay for melanophore pigment organelles. Methods Enzymol. 298:361–72 [Google Scholar]
  122. Rong J, McGuire JR, Fang Z-H, Sheng G, Shin J-Y. 122.  et al. 2006. Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth. J. Neurosci. 26:226019–30 [Google Scholar]
  123. Saha AR, Hill J, Utton MA, Asuni AA, Ackerley S. 123.  et al. 2004. Parkinson's disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J. Cell Sci. 117:71017–24 [Google Scholar]
  124. Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C. 124.  et al. 2006. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51:129–42 [Google Scholar]
  125. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A. 125.  et al. 2008. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl. Acad. Sci. USA 105:5220728–33 [Google Scholar]
  126. Saxton WM, Hollenbeck PJ. 126.  2012. The axonal transport of mitochondria. J. Cell Sci. 125:92095–104 [Google Scholar]
  127. Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow E-M. 127.  1999. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38:123549–58 [Google Scholar]
  128. Schnitzer MJ, Block SM. 128.  1997. Kinesin hydrolyses one ATP per 8-nm step. Nature 388:6640386–90 [Google Scholar]
  129. Schnitzer MJ, Visscher K, Block SM. 129.  2000. Force production by single kinesin motors. Nat. Cell Biol. 2:10718–23 [Google Scholar]
  130. Shemesh OA, Erez H, Ginzburg I, Spira ME. 130.  2008. Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9:4458–71 [Google Scholar]
  131. Shemesh OA, Spira ME. 131.  2010. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol. 119:2235–48 [Google Scholar]
  132. Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S. 132.  et al. 2008. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135:61098–107 [Google Scholar]
  133. Sinadinos C, Burbidge-King T, Soh D, Thompson LM, Marsh JL. 133.  et al. 2009. Live axonal transport disruption by mutant huntingtin fragments in Drosophila motor neuron axons. Neurobiol. Dis. 34:2389–95 [Google Scholar]
  134. Smith KD, Peethumnongsin E, Lin H, Zheng H, Pautler RG. 134.  2010. Increased human wildtype tau attenuates axonal transport deficits caused by loss of APP in mouse models. Magn. Reson. Insights 4:11–18 [Google Scholar]
  135. Soppina V, Rai AK, Ramaiya AJ, Barak P, Mallik R. 135.  2009. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc. Natl. Acad. Sci. USA 106:4619381–86 [Google Scholar]
  136. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E. 136.  et al. 2005. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307:57131282–88 [Google Scholar]
  137. Stowers RS, Megeath LJ, Górska-Andrzejak J, Meinertzhagen IA, Schwarz TL. 137.  2002. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36:61063–77 [Google Scholar]
  138. Su Q, Cai Q, Gerwin C, Smith CL, Sheng ZH. 138.  2004. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat. Cell Biol. 6:10941–53 [Google Scholar]
  139. Szpankowski L, Encalada SE, Goldstein LSB. 139.  2012. Subpixel colocalization reveals amyloid precursor protein-dependent kinesin-1 and dynein association with axonal vesicles. Proc. Natl. Acad. Sci. USA 109:228582–87 [Google Scholar]
  140. Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M. 140.  et al. 2006. Molecular anatomy of a trafficking organelle. Cell 127:4831–46 [Google Scholar]
  141. Tanaka K, Sugiura Y, Ichishita R, Mihara K, Oka T. 141.  2011. KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J. Cell Sci. 124:142457–65 [Google Scholar]
  142. Trinczek B, Ebneth A, Mandelkow E-M, Mandelkow E. 142.  1999. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J. Cell Sci. 112:142355–67 [Google Scholar]
  143. Trushina E, Dyer RB, Badger JD, Ure D, Eide L. 143.  et al. 2004. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol. 24:188195–209 [Google Scholar]
  144. Uyeda TQP, Kron SJ, Spudich JA. 144.  1990. Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin. J. Mol. Biol. 214:3699–710 [Google Scholar]
  145. van den Berg B, Wain R, Dobson CM, Ellis RJ. 145.  2000. Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J. 19:153870–75 [Google Scholar]
  146. Verhey KJ, Hammond JW. 146.  2009. Traffic control: regulation of kinesin motors. Nat. Rev. 10:11765–77 [Google Scholar]
  147. Visscher K, Schnitzer MJ, Block SM. 147.  1999. Single kinesin molecules studied with a molecular force clamp. Nature 400:6740184–89 [Google Scholar]
  148. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P. 148.  et al. 2010. Tau reduction prevents Aβ-induced defects in axonal transport. Science 330:6001198 [Google Scholar]
  149. Wang L, Brown A. 149.  2002. Rapid movement of microtubules in axons. Curr. Biol. 12:171496–1501 [Google Scholar]
  150. Wang L, Ho C-L, Sun D, Liem RKH, Brown A. 150.  2000. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2:3137–41 [Google Scholar]
  151. Wang X, Schwarz TL. 151.  2009. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:1163–74 [Google Scholar]
  152. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL. 152.  et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:4893–906 [Google Scholar]
  153. Wanker EE. 153.  2000. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol. Chem. 381:9–10937–42 [Google Scholar]
  154. Weaver C, Leidel C, Szpankowski L, Farley NM, Shubeita GT, Goldstein LSB. 154.  2013. Endogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein. Traffic 14:3295–308 [Google Scholar]
  155. Weedon MN, Hastings R, Caswell R, Xie W, Paszkiewicz K. 155.  et al. 2011. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 89:2308–12 [Google Scholar]
  156. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. 156.  2009. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48:92045–52 [Google Scholar]
  157. Welte MA. 157.  2004. Bidirectional transport along microtubules. Curr. Biol. 14:13R525–37 [Google Scholar]
  158. Welte MA, Gross SP. 158.  2008. Molecular motors: a traffic cop within?. HFSP J. 2:4178–82 [Google Scholar]
  159. Whitworth AJ, Pallanck LJ. 159.  2009. The PINK1/Parkin pathway: a mitochondrial quality control system?. J. Bioenerg. Biomembr. 41:6499–503 [Google Scholar]
  160. Wu C, Ramirez A, Cui B, Ding J, Delcroix J-DM. 160.  et al. 2007. A functional dynein-microtubule network is required for NGF signaling through the Rap1/MAPK pathway. Traffic 8:111503–20 [Google Scholar]
  161. Yi JY, Ori-McKenney KM, McKenney RJ, Vershinin M, Gross SP, Vallee RB. 161.  2011. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J. Cell Biol. 195:2193–201 [Google Scholar]
  162. Youle RJ, Narendra DP. 162.  2011. Mechanisms of mitophagy. Nat. Rev. 12:19–14 [Google Scholar]
  163. Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T. 163.  et al. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105:5587–97 [Google Scholar]
  164. Zimmerman SB, Trach SO. 164.  1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222:3599–620 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-022746
Loading
/content/journals/10.1146/annurev-biophys-051013-022746
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error