Skip to main content
Log in

Effect of receptor potential on mechanical oscillations in a model of sensory hair cell

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Hair cells mediating the senses of hearing and balance rely on active mechanisms for amplification of mechanical signals. In amphibians, hair cells exhibit spontaneous self-sustained mechanical oscillations of their hair bundles. We study the response of the mechanical oscillations to perturbation of the cell’s membrane potential in a model for hair bundle of bullfrog saccular hair cells. We identify bifurcation mechanism leading to mechanical oscillations using the membrane potential and the strength of fast adaptation as control parameters and then compute static and dynamic sensitivity of mechanical oscillations to voltage variations. We show that fast adaptation results in the static sensitivity of oscillating hair bundles in the range 0.1–0.2 nm/mV, consistent with recent experimental work. Predicted dynamic response of oscillating hair bundle to voltage variations is characterized by the values of sensitivity of up to 2 nm/mV, enhanced by the presence of fast adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Fettiplace, C.M. Hackney, Nat. Rev. Neurosci. 7, 19 (2006)

    Article  Google Scholar 

  2. A. Hudspeth, Neuron 59, 530 (2008)

    Article  Google Scholar 

  3. J. Ashmore, P. Avan, W. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. Hackney, A. Hudspeth, F. Jülicher et al., Hear. Res. 266, 1 (2010)

    Article  Google Scholar 

  4. T. Reichenbach, A. Hudspeth, Rep. Prog. Phys. 77, 076601 (2014)

    Article  ADS  Google Scholar 

  5. A. Hudspeth, Nat. Rev. Neurosci. 15, 600 (2014)

    Article  Google Scholar 

  6. G.A. Manley, J. Neurophysiol. 86, 541 (2001)

    Google Scholar 

  7. P. Martin, D. Bozovic, Y. Choe, A. Hudspeth, J. Neurosci. 23, 4533 (2003)

    Google Scholar 

  8. D. Ramunno-Johnson, C.E. Strimbu, L. Fredrickson, K. Arisaka, D. Bozovic, Biophys. J. 96, 1159 (2009)

    Article  ADS  Google Scholar 

  9. Y. Roongthumskul, L. Fredrickson-Hemsing, A. Kao, D. Bozovic, Biophys. J. 101, 603 (2011)

    Article  ADS  Google Scholar 

  10. P. Martin, A. Mehta, A. Hudspeth, Proc. Natl. Acad. Sci. USA 97, 12026 (2000)

    Article  ADS  Google Scholar 

  11. R. Eatock, Annu. Rev. Neurosci. 23, 285 (2000)

    Article  Google Scholar 

  12. A. Ricci, A. Crawford, R. Fettiplace, J. Neurosci. 22, 44 (2002)

    Google Scholar 

  13. R. Fettiplace, A. Ricci, Curr. Opin. Neurobiol. 13, 446 (2003)

    Article  Google Scholar 

  14. Y. Wu, A. Ricci, R. Fettiplace, J. Neurophysiol. 82, 2171 (1999)

    Google Scholar 

  15. J.R. Holt, D.P. Corey, Proc. Natl. Acad. Sci. USA 97, 11730 (2000)

    Article  ADS  Google Scholar 

  16. M. Rutherford, W. Roberts, J. Neurosci. 29, 10025 (2009)

    Article  Google Scholar 

  17. M. Castellano-Muñoz, S.H. Israel, A. Hudspeth, PLoS One 5, e13777 (2010)

    Article  ADS  Google Scholar 

  18. E.L. Cheung, D.P. Corey, Biophys. J. 90, 124 (2006)

    Article  ADS  Google Scholar 

  19. W. Denk, W. Webb, Hearing Res. 60, 89 (1992)

    Article  Google Scholar 

  20. D. Bozovic, A. Hudspeth, Proc. Natl. Acad. Sci. USA 100, 958 (2003)

    Article  ADS  Google Scholar 

  21. C. Strimbu, A. Kao, J. Tokuda, D. Ramunno-Johnson, D. Bozovic, Hearing Res. 265, 38 (2010)

    Article  Google Scholar 

  22. D. Ramunno-Johnson, C.E. Strimbu, A. Kao, L.F. Hemsing, D. Bozovic, Hearing Res. 268, 163 (2010)

    Article  Google Scholar 

  23. S.W. Meenderink, P.M. Quiñones, D. Bozovic, J. Neurosci. 35, 14457 (2015)

    Article  Google Scholar 

  24. A. Vilfan, T. Duke, Biophys. J. 85, 191 (2003)

    Article  Google Scholar 

  25. K.A. Montgomery, M. Silber, S.A. Solla, Phys. Rev. E. 75, 051924 (2007)

    Article  ADS  Google Scholar 

  26. L. Han, A. Neiman, Phys. Rev. E. 81, 041913 (2010)

    Article  ADS  Google Scholar 

  27. A.B. Neiman, K. Dierkes, B. Lindner, L. Han, A.L. Shilnikov, J. Math. Neurosci. 1, 11 (2011)

    Article  Google Scholar 

  28. R.M. Amro, A.B. Neiman, Phys. Rev. E. 90, 052704 (2014)

    Article  ADS  Google Scholar 

  29. B. Nadrowski, P. Martin, F. Jülicher, Proc. Natl. Acad. Sci. USA 101, 12195 (2004)

    Article  ADS  Google Scholar 

  30. J.Y. Tinevez, F. Jülicher, P. Martin, Biophys. J. 93, 4053 (2007)

    Article  ADS  Google Scholar 

  31. J.S. Bendat, A.G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley & Sons, 2011)

  32. A. Dhooge, W. Govaerts, Y.A. Kuznetsov, ACM Trans. Math. Softw. 29, 141 (2003)

    Article  Google Scholar 

  33. J.D. Salvi, D.Ó. Maoiléidigh, A. Hudspeth, Biophys. J. 111, 798 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahvand Khamesian or Alexander B. Neiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamesian, M., Neiman, A.B. Effect of receptor potential on mechanical oscillations in a model of sensory hair cell. Eur. Phys. J. Spec. Top. 226, 1953–1962 (2017). https://doi.org/10.1140/epjst/e2017-70040-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70040-6

Navigation