Skip to main content
Log in

Firing-rate model of a population of adaptive neurons

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A firing rate (FR) model for a population of adaptive leaky integrate-and-fire neurons has been proposed. Unlike known FR models, it describes more precisely the unsteady firing regimes and takes into account the effect of slow potassium currents of spike adaptation. Approximations of the adaptive channel conductances are rewritten from voltage-dependent to spike-dependent and then to rate-dependent ones. The proposed FR model is compared with a very detailed population model, namely, the conductance-based Refractory Density model. This comparison shows the coincidence of the first peak of activity after the start of stimulation as well as of the stationary state. As an example of simulation of coupled adaptive neuronal populations, a ring model has been constructed, which reproduces a visual illusion known as tilt after-effect. The FR model is recommended for mathematical analysis of neuronal population activity as well as for computationally expensive large-scale network simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(A)LIF:

(adaptive) leaky integrate-and-fire

HH:

Hodgkin-Huxley

FR:

firing-rate

RD:

refractory density (model)

References

  1. P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT Press, Cambridge, Mass., 2002).

    Google Scholar 

  2. M. N. Zhadin, Biofizika 39(1), 129 (1994).

    Google Scholar 

  3. O. Shriki, D. Hansel, and H. Sompolinsky, Neural Comp. 15, 1809 (2003).

    Article  MATH  Google Scholar 

  4. B. W. Knight, J. Gen. Physiol. 59, 734 (1972).

    Article  Google Scholar 

  5. A. Omurtag, B. W. Knight, and L. Sirovich, J. Comput. Neurosci. 8, 51 (2000).

    Article  MATH  Google Scholar 

  6. J. Eggert and J. L. van Hemmen, Neural Comp. 13, 1923 (2001).

    Article  MATH  Google Scholar 

  7. D. Nykamp and D. Tranchina, J. Comput. Neurosci. 8, 19 (2000).

    Article  MATH  Google Scholar 

  8. W. Gerstner and W. M. Kistler, Spiking Neuron M odels:Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  9. V. L. Dunin-Barkovskii, Informational Processes in Neuronal Structures (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  10. A. V. Chizhov, L. J. Graham, and A. A. Turbin, Neurocomputing 70, 252 (2006).

    Article  Google Scholar 

  11. A. V. Chizhov and L. J. Graham, Phys. Rev. E 75, 011924 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. V. Chizhov and L. J. Graham, Phys. Rev. E 77, 011910 (2008).

    Article  ADS  Google Scholar 

  13. A. N. Pokrovskii, Control Processes in Nerve Cells (LGU, Leningrad, 1987) [in Russian].

    Google Scholar 

  14. A. V. Chizhov, S. Rodrigues, and J. R. Terry, Phys. Lett. A 369(1–2), 31 (2007).

    Article  ADS  Google Scholar 

  15. A. V. Chizhov and L. J. Graham,, in Neuroinformatics2007 (MIFI, Moscow, 2007), Pt. 3, pp. 17–24 [in Russian].

    Google Scholar 

  16. L. J. Borg-Graham, in Cerebral cortex: Cortical models, Ed. by P. S. Ulinsky, E. G. Jones, and A. Peters (Plenum Press, New York, 1998).

    Google Scholar 

  17. P. I. M. Johannesma, in Neural Networks (Springer, Berlin, 1968), pp.116–144.

    Google Scholar 

  18. D. Hansel and H. Sompolinsky, J. Comp. Neurosci. 3, 7 (1996).

    Article  Google Scholar 

  19. M. A. Webster, in The Visual Neurosciences, Ed. by L.M. Chalupa and J. S. Werner (MIT Press, Cambridge, Mass., 2004), pp. 936–947.

    Google Scholar 

  20. E. Muller, L. Buesing, J. Schemmel, and K. Meier, Neural Comp. 19, 2958 (2007).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Buchin.

Additional information

Original Russian Text © A.Yu. Buchin, A.V. Chizhov, 2010, published in Biofizika, 2010, Vol. 55, No. 4, pp. 664–673.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchin, A.Y., Chizhov, A.V. Firing-rate model of a population of adaptive neurons. BIOPHYSICS 55, 592–599 (2010). https://doi.org/10.1134/S0006350910040135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910040135

Keywords

Navigation