Precise modelling of the eye for proton therapy of intra-ocular tumours

and

Published 1 February 2002 Published under licence by IOP Publishing Ltd
, , Citation Barbara Dobler and Rolf Bendl 2002 Phys. Med. Biol. 47 593 DOI 10.1088/0031-9155/47/4/304

0031-9155/47/4/593

Abstract

A new method is described that allows precise modelling of organs at risk and target volume for radiation therapy of intra-ocular tumours. The aim is to optimize the dose distribution and thus to reduce normal tissue complication probability. A geometrical 3D model based on elliptic shapes was developed that can be used for multimodal model-based segmentation of 3D patient data. The tumour volume cannot be clearly identified in CT and MR data, whereas the tumour outline can be discriminated very precisely in fundus photographs. Therefore, a multimodal 2D fundus diagram was developed, which allows us to correlate and display simultaneously information extracted from the eye model, 3D data and the fundus photograph. Thus, the connection of fundus diagram and 3D data is well-defined and the 3D volume can be calculated directly from the tumour outline drawn onto the fundus photograph and the tumour height measured by ultrasound. The method allows the calculation of a precise 3D eye model of the patient, including the different structures of the eye as well as the tumour volume. The method was developed as part of the new 3D treatment planning system OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner-Institut Berlin.

Export citation and abstract BibTeX RIS