Skip to main content
Log in

On the mechanism of cerebellar contributions to cognition

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is highly stereotyped in its cellular circuitry. Output neurons in the nuclei with one exception excite their downstream targets in other parts of the nervous system. Yet the much more voluminous cerebellar cortex inhibits these output neurons. This has suggested that the desired output activity pattern is achieved by removing all unwanted activity patterns (‘sculpting’). Lesions of the lateral cerebellum impair cognitive functions including speech. These lateral portions are active during imagined as well as overt movements. Imagined movements could be used to time task performances in the absence of an external clock. The intrinsic circuitry suggests that the cerebellar cortex links together and combines nuclear output activities. A linkage mechanism is consistent with the motor deficits in coordination after midline vermal section in humans and Purkinje cell recording in trained animals. The lateral cerebellum, which projects to frontal and parietal ‘association’ cortex, may link together cerebral ‘cognitive units’ as a substrate for coordinated thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73:167–80.

    Article  PubMed  CAS  Google Scholar 

  2. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. Brain. 1992;115:155–78.

    Article  PubMed  Google Scholar 

  3. Decety J, Sjoholm H, Ryding E, Stenberg G, Ingvar DH. The cerebellum participates in mental activity: Tomographie measurements of regional cerebral blood flow. Brain Res. 1990;535:313–17.

    Article  PubMed  CAS  Google Scholar 

  4. Ryding E, Decety J, Sjoholm H, Stenberg G, Ingvar DH. Motor imagery activates the cerebellum regionally. A SPECT rCBRF study with 99m Tc-HMPAO. Cog. Brain Res. 1993;l:94–9.

    Article  Google Scholar 

  5. Gebhart AG, Petersen SE, Thach WT. The role of the cerebellum in language. In: Highstein SM, Thach WT, editors. Recent developments in cerebellar research. New York: New York Academy of Sciences, 2002. pp 318–33.

    Google Scholar 

  6. Maschke M, Drepper J, Burgerhoff K, Calabrese S, Kolb FP, Daum I, Diener HC, Timmann D. Differences in trace and delay visuomotor associative learning incerebellarpatients. Exp Brain Res. 2002;147:538–48.

    Article  PubMed  Google Scholar 

  7. Timmann D, Drepper J, Calabrese S, Burgerhoff K, Maschke M, Kolb FP, Daum I, Diener HC. Use of sequence information in associative learning in control subjects and cerebellar patients. Cerebellum. 2004;3:75–82.

    Article  PubMed  CAS  Google Scholar 

  8. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;l29:306–20.

    Google Scholar 

  9. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  10. Thach WT. On the specific role of the cerebellum in motor learning and cognition: clues from pet activation and lesion studies in humans. Behav Brain Sci. 1996;19:411–31.

    Google Scholar 

  11. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    PubMed  CAS  Google Scholar 

  12. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  13. Hore J, Watts S. Timing finger opening in overarm throwing based on a spatial representation of hand path. J Neurophysiol. 2005;93:3189.

    Article  PubMed  Google Scholar 

  14. Eccles JC, Ito M, Szentagothai J. The cerebellum as a neuronal machine. New York: Springer-Verlag, Inc, 1967.

    Google Scholar 

  15. Ito M. The cerebellum and neural control. New York: Appleton-Century-Crofts, 1984.

    Google Scholar 

  16. Mugnaini E. The length of cerebellar parallel fibers in chicken and rhesus monkey. J.Comp.Neurol. 1983;220:7–15.

    Article  PubMed  CAS  Google Scholar 

  17. Thach WT, Jones EG. The cerebellar dentatothalamic connection. Terminal field, lamellae, rods and somatotopy. Brain Res. 1979;169:168–72.

    Article  PubMed  CAS  Google Scholar 

  18. Asanuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev. 1983;5:267–99.

    Article  Google Scholar 

  19. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev. 1983;5:237–65.

    Article  Google Scholar 

  20. Thach WT, Perry JG, Kane SA, Goodkin HP. Cerebellar nuclei: Rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy. Rev Neurologique. 1993;149:607–28.

    CAS  Google Scholar 

  21. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  22. Bastian AJ, Mink JW, Kaufman BA, Thach WT. Posterior vermal split syndrome. Ann Neurol. 1998;44:601–10.

    Article  PubMed  CAS  Google Scholar 

  23. Heck DH, Thach WT, Keating JG. On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement. Proc Natl Acad Sci USA. 2007 May l;104(18):7658–63. Epub 2007 Apr. 23.

    Article  PubMed  CAS  Google Scholar 

  24. Gilbert PFC, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128:309–28.

    Article  PubMed  CAS  Google Scholar 

  25. Baizer JS, Glickstein M. Role of cerebellum in prism adaptation. J Physiol. 1974;23:34–5.

    Google Scholar 

  26. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119:1183–98.

    Article  PubMed  Google Scholar 

  27. Kenyon GT, Medina JF, Mauk MD. A mathematical model of the cerebellar-olivary system I: Self-regulating equilibrium of climbing fiber activity. J Comput Neurosci. 1998a;5:17–33.

    Article  PubMed  CAS  Google Scholar 

  28. Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31:785–97.

    PubMed  CAS  Google Scholar 

  29. Lang CE, Schieber MH. Human finger independence: Limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol. 2004;92:2802–10.

    Article  PubMed  Google Scholar 

  30. Goodkin HP, Thach WT. Cerebellar control of constrained and unconstrained movements. I. Nuclear inactivation. J Neurophysiol. 2003;89:884–95.

    Article  PubMed  CAS  Google Scholar 

  31. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.

    PubMed  CAS  Google Scholar 

  32. Connor LT, DeShazo Braby T, Snyder AZ, Lewis C, Blasi V, Corbetta M. Cerebellar activity switches hemispheres with cerebral recovery in aphasia. Neuropsychologia. 2006;44:171–7.

    Article  PubMed  Google Scholar 

  33. Bellugi U, Bihrle A, Jernigan T, Trauner D, Doherty S. Neuropsychological, neurological, and neuroanatomical profile of Williams Syndrome. Am.J Med Gen, 115–25.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Thach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thach, W.T. On the mechanism of cerebellar contributions to cognition. Cerebellum 6, 163–167 (2007). https://doi.org/10.1080/14734220701373530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220701373530

Key words

Navigation