Skip to main content
Log in

Protein kinase C: Its role in activity-dependent purkinje cell dendritic development and plasticity

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is a central organ in the control of motor learning and performance. In this respect, the cellular plasticity model systems of multiple climbing fiber elimination and long-term depression have been intensively studied. The signalling pathways involved in these plastic changes are now well understood on a molecular level and protein kinase C (PKC) activity appears to be crucially involved in both processes. Furthermore, as shown in recent studies, Purkinje cell dendritic development also critically depends on the activity of PKC. Thereby, the Ca2+-dependent PKC subtypes, activated by synaptic inputs through metabotropic glutamate receptors, trigger functional changes as well as long-term anatomical maturation of the Purkinje cell dendritic tree during cerebellar development at different time levels. This review summarizes these findings and forwards the hypothesis of a link between the functional mechanisms underlying LTD and the differentiation of Purkinje cell dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci 1997; 20: 177–181.

    Article  PubMed  CAS  Google Scholar 

  2. Crépel F. Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci 1982; 5: 266–269.

    Article  Google Scholar 

  3. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001;81: 1143–1195.

    PubMed  CAS  Google Scholar 

  4. Sotelo C. Cerebellar synaptogenesis: what we can learn from mutant mice. J Exp Biol 1990; 153: 225–249.

    PubMed  CAS  Google Scholar 

  5. Schmidt R. Die postnatale Genese der Kleinhirndefekte röntgenbestrahlter Hausmäuse. J Hirnforsch 1962; 3: 163–209.

    Google Scholar 

  6. Hámori J. Development of synaptic organization in the partially agranular and in the transneuronally atrophied cerebellar cortex. In: Llinás R, editor. Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association, 1969: 845–858.

    Google Scholar 

  7. Airman J, Anderson WJ. Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged X-irradiation started at birth. J Comp Neurol 1972; 146: 355–406.

    Article  Google Scholar 

  8. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 1973; 152: 133–161.

    Article  PubMed  CAS  Google Scholar 

  9. Baptista CA, Hatten ME, Blazeski R, Mason CA. Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 1994; 12: 243–260.

    Article  PubMed  CAS  Google Scholar 

  10. Takács J, Metzger F. Morphological study of organotypic cerebellar cultures. Acta Biol Hung 2002; 53: 187–204.

    Article  PubMed  Google Scholar 

  11. Seil FJ, Kies MW, Bacon ML. A comparison of demyelinating and myelination-inhibiting factor induction by whole peripheral nerve tissue and P2 protein. Brain Res 1980; 210: 441–448.

    Article  Google Scholar 

  12. Blank NK, Seil FJ, Herndon RM. An ultrastructural study of cortical remodeling in cytosine arabinoside induced granuloprival cerebellum in tissue culture. Neuroscience 1982; 7: 1509–1531.

    Article  PubMed  CAS  Google Scholar 

  13. Seil FJ. Enhanced Purkinje cell survival in granuloprival cerebellar cultures. Brain Res 1987; 432: 312–316.

    PubMed  CAS  Google Scholar 

  14. Morrison ME, Mason CA. Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J Neurosci 1998; 18: 3563–3573.

    PubMed  CAS  Google Scholar 

  15. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in 82 glutamate receptor gene. Nature 1997; 388: 769–773.

    Article  PubMed  CAS  Google Scholar 

  16. Schilling K, Dickinson MH, Connor JA, Morgan JI. Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron 1991; 7: 891–902.

    Article  PubMed  CAS  Google Scholar 

  17. Seil FJ, Drake-Baumann R. Reduced cortical inhibitory synaptogenesis in organotypic cerebellar cultures developing in the absence of neuronal activity. J Comp Neurol 1994; 342: 366–377.

    Article  PubMed  CAS  Google Scholar 

  18. Metzger F, Kapfhammer JP. Protein kinase C activity modulates dendritic differentiation of rat Purkinje cells in cerebellar slice cultures. Eur J Neurosci 2000; 12: 1993–2005.

    Article  PubMed  CAS  Google Scholar 

  19. Vogel MW, Prittie J. Purkinje cell dendritic arbors in chick embryos following chronic treatment with an N-methyl-D-aspartate receptor antagonist. J Neurobiol 1995; 26: 537–552.

    Article  PubMed  CAS  Google Scholar 

  20. Hirai H, Launey T. The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J Neurosci 2000; 20: 5217–5224.

    PubMed  CAS  Google Scholar 

  21. Schrenk K, Kapfhammer JP, Metzger F. Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase Cγ-deficient mice. Neuroscience 2002; 110: 675–689.

    Article  PubMed  CAS  Google Scholar 

  22. Huang K-P, Huang FL. How is protein kinase C activated in CNS? Neurochem Int 1993; 22: 417–433.

    Article  PubMed  CAS  Google Scholar 

  23. Sossin WS, Schwartz JH. Ca2+-independent protein kinase Cs contain an amino-terminal domain similar to the C2 consensus sequence. Trends Biochem Sci 1993; 18: 207–208.

    Article  PubMed  CAS  Google Scholar 

  24. Newton AC. Protein kinase C: structure, function and regulation. J Biol Chem 1995; 270: 28495–28498.

    Article  PubMed  CAS  Google Scholar 

  25. Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 1998; 332: 281–292.

    PubMed  CAS  Google Scholar 

  26. Mochly-Rosen D, Gordon AS. Anchoring proteins for protein kinase C: a means for isozyme selectivity. FASEB J 1998; 12: 35–42.

    PubMed  CAS  Google Scholar 

  27. Huang FL, Yoshida Y, Nakabayashi H, Young WS, III, Huang K-P. Immunocytochemical localization of protein kinase C isozymes in rat brain. J Neurosci 1988; 8: 4734–4744.

    PubMed  CAS  Google Scholar 

  28. Wetsel WC, Khan WA, Merchenthaler I, et al. Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol 1992; 117: 121–133.

    Article  PubMed  CAS  Google Scholar 

  29. Goto MM, Romero GG, Balaban CD. Transient changes in flocculonodular lobe protein kinase C expression during vestibular compensation. J Neurosci 1997; 17: 4367–4381.

    PubMed  CAS  Google Scholar 

  30. Hirono M, Sugiyama T, Kishimoto Y, et al. Phospholipase Cß4 and protein kinase Cα and/or protein kinase Cßl are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem 2001; 276: 45236–45242.

    Article  PubMed  CAS  Google Scholar 

  31. Ase K, Saito N, Shearman MS, et al. Distinct cellular expression of ßl- and ßII subspecies of protein kinase C in rat cerebellum. J Neurosci 1988; 8: 3850–3856.

    PubMed  CAS  Google Scholar 

  32. Barmack NH, Qian Z, Yoshimura J. Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. J Comp Neurol 2000; 427: 235–254.

    Article  PubMed  CAS  Google Scholar 

  33. Huang FL, Young WS, III, Yoshida Y, Huang K-P. Developmental expression of protein kinase C isozymes in rat cerebellum. Dev Brain Res 1990; 52: 121–130.

    Article  CAS  Google Scholar 

  34. Hashimoto T, Ase K, Sawamura S, et al. Postnatal development of a brain-specific subspecies of protein kinase C in rat. J Neurosci 1988; 8: 1678–1683.

    PubMed  CAS  Google Scholar 

  35. Kose A, Saito N, Ito H, Kikkawa U, Nishizuka Y, Tanaka C. Electron microscopic localization of type I protein kinase C in rat Purkinje cells. J Neurosci 1988; 8: 4262–4268.

    PubMed  CAS  Google Scholar 

  36. Cardeil M, Landsend AS, Eidet J, Wieloch T, Blackstad TW, Ottersen OP. High resolution immunogold analysis reveals distinct subcellular compartmentation of protein kinase Cγ and δ in rat Purkinje cells. Neuroscience 1998; 82: 709–725.

    Article  Google Scholar 

  37. Chen S, Hillman DE. Compartmentation of the cerebellar cortex by protein kinase Cδ. Neuroscience 1993; 56: 177–188.

    Article  PubMed  CAS  Google Scholar 

  38. Chen S, Hillman DE. Immunohistochemical localization of protein kinase Cδ during postnatal development of the cerebellum. Dev Brain Res 1994; 80: 19–25.

    Article  CAS  Google Scholar 

  39. Garcia MM, Cusick CG, Harlan RE. Protein kinase CS in rat brain: association with sensory neuronal hierarchies. J Comp Neurol 1993; 331: 375–388.

    Article  PubMed  CAS  Google Scholar 

  40. Merchenthaler I, Liposits Z, Reid JJ, Wetsel WC. Light and electron microscopic immunocytochemical localization of PKC immunoreactivity in the rat central nervous system. J Comp Neurol 1993; 336: 378–399.

    Article  PubMed  CAS  Google Scholar 

  41. Garcia MM, Harlan RE. Protein kinase C in central vestibular, cerebellar, and precerebellar pathways of the rat. J Comp Neurol 1997; 385: 26–42.

    Article  PubMed  CAS  Google Scholar 

  42. Balaban CD, Romero GG. A role of climbing fibers in regulation of flocculonodular lobe protein kinase C expression during vestibular compensation. Brain Res 1998; 804: 253–265.

    Article  PubMed  CAS  Google Scholar 

  43. Barmack NH, Qian ZY, Kim HJ, Yoshimura J. Activity-dependent distribution of protein kinase C-δ within rat cerebellar Purkinje cells following unilateral labyrinthectomy. Exp Brain Res 2001; 141: 6–20.

    Article  PubMed  CAS  Google Scholar 

  44. Young WS, III. Expression of three (and a putative four) protein kinase C genes in brains of rat and rabbit. J Chem Neuroanat 1988; 1: 177–194.

    PubMed  CAS  Google Scholar 

  45. Gong J, Xu J, Bezanilla M, van Huizen R, Derin R, Li M. Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 1999; 285: 1565–1569.

    Article  PubMed  CAS  Google Scholar 

  46. Naik MU, Benedikz E, Hernandez I, et al. Distribution of protein kinase Mξ; and the complete protein kinase C isoform family in rat brain. J Comp Neurol 2000; 426: 243–258.

    Article  PubMed  CAS  Google Scholar 

  47. Moriya M, Tanaka S. Prominent expression of protein kinase Cγ mRNA in the dendrite-rich neuropil of mice cerebellum at the critical period for synaptogenesis. Neuroreport 1994; 5: 929–932.

    Article  PubMed  CAS  Google Scholar 

  48. Ito M. Long-term depression. Ann Rev Neurosci 1989; 12: 85–102.

    Article  PubMed  CAS  Google Scholar 

  49. Changeux JP, Courrege P, Danchin A. A theory of the epigenesis of neuronal networks by selective stabilization of synapses. Proc Natl Acad Sci USA 1973; 70: 2974–2978.

    Article  PubMed  CAS  Google Scholar 

  50. Lohof AM, Delhaye-Bouchaud N, Mariani J. Synapse elimination in the central nervous system: functional significance and cellular mechanisms. Rev Neurosci 1996; 7: 85–101.

    PubMed  CAS  Google Scholar 

  51. Kashiwabuchi N, Ikeda K, Araki K, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar longterm depression in GluRδ2 mutant mice. Cell 1995; 81: 245–252.

    Article  PubMed  CAS  Google Scholar 

  52. Hashimoto K, Watanabe M, Kurihara H, et al. Climbing fiber synapse elimination during postnatal cerebellar development requires signal transduction involving Gαq and phospholipase Cß4. Prog Brain Res 2000; 124: 31–48.

    Article  PubMed  CAS  Google Scholar 

  53. Kurihara H, Hashimoto K, Kano M, et al. Impaired parallel fiber→Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor δ2 subunit. J Neurosci 1997; 17: 9613–9623.

    PubMed  CAS  Google Scholar 

  54. Kano M, Hashimoto K, Chen C, et al. Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell 1995; 83: 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  55. Kano M, Hashimoto K, Kurihara H, et al. Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluRl. Neuron 1997; 18: 71–79.

    Article  PubMed  CAS  Google Scholar 

  56. Kano M, Hashimoto K, Watanabe M, et al. Phospholipase Cß4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc Natl Acad Sci USA 1998; 95: 15724–15729.

    Article  PubMed  CAS  Google Scholar 

  57. Offermanns S, Hashimoto K, Watanabe M, et al. Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Gαq. Proc Natl Acad Sci USA 1997; 94: 14089–14094.

    Article  PubMed  CAS  Google Scholar 

  58. De Zeeuw CI, Hansel C, Bian F, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 1998; 20: 495–508.

    Article  PubMed  Google Scholar 

  59. Ichise T, Kano M, Hashimoto K, et al. mGluRl in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 2000; 288: 1832–1835.

    Article  PubMed  CAS  Google Scholar 

  60. Goossens J, Daniel H, Rancillac A, et al. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci 2001; 21: 5813–5823.

    PubMed  CAS  Google Scholar 

  61. Ghoumari AM, Wehrle R, De Zeeuw CI, Sotelo C, Dusart I. Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration. J Neurosci 2002; 22: 3531–3542.

    PubMed  CAS  Google Scholar 

  62. Ito M, Kano M. Long-lasting depression of parallel fiber Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Letters 1982; 33: 253–256.

    Article  CAS  Google Scholar 

  63. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982; 324: 113–134.

    PubMed  CAS  Google Scholar 

  64. Ekerot CF, Kano M. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 1985; 342: 357–360.

    Article  PubMed  CAS  Google Scholar 

  65. Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 1991; 254: 1656–1659.

    Article  PubMed  CAS  Google Scholar 

  66. Linden DJ. Input-specific induction of cerebellar long-term depression does not require presynaptic alteration. Learn Mem 1994; 1: 121–128.

    PubMed  CAS  Google Scholar 

  67. Hansel C, Linden DJ. Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron 2000; 26: 473–482.

    Article  PubMed  CAS  Google Scholar 

  68. Hirai H. Modification of AMPA receptor clustering regulates cerebellar synaptic plasticity. Neurosci Res 2001; 39: 261–267.

    Article  PubMed  CAS  Google Scholar 

  69. Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 2001; 28: 499–510.

    Article  Google Scholar 

  70. Chen C, Kano M, Abeliovich A, et al. Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCy mutant mice. Cell 1995; 83: 1233–1242.

    Article  PubMed  CAS  Google Scholar 

  71. Narasimhan K, Linden DJ. Defining a minimal computational unit for cerebellar long-term depression. Neuron 1996; 17: 333–341.

    Article  PubMed  CAS  Google Scholar 

  72. Salin PA, Malenka RC, Nicoll RA. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 1996; 16: 797–803.

    Article  PubMed  CAS  Google Scholar 

  73. Chen C, Regehr WG. The mechanism of cAMP-mediated enhancement at a cerebellar synapse. J Neurosci 1997; 17: 8687–8694.

    PubMed  CAS  Google Scholar 

  74. Storm DR, Hansel C, Hacker B, Parent A, Linden DJ. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 1998; 20: 1199–1210.

    Article  PubMed  CAS  Google Scholar 

  75. Linden DJ, Ahn S. Activation of presynaptic cAMP-dependent protein kinase is required for induction of cerebellar long-term potentiation. J Neurosci 1999; 19: 10221–10227.

    PubMed  CAS  Google Scholar 

  76. Lev-Ram V, Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 2002; 99: 8389–8393.

    Article  PubMed  CAS  Google Scholar 

  77. McAllister AK. Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 2000; 10: 963–973.

    Article  PubMed  CAS  Google Scholar 

  78. Redmond L, Ghosh A. The role of notch and rho GTPase signaling in the control of dendritic development. Current Opin Neurobiol 2001; 11: 111–117.

    Article  CAS  Google Scholar 

  79. Scott EK, Luo L. How do dendrites take their shape? Nature Neurosci 2001; 4: 359–365.

    Article  PubMed  CAS  Google Scholar 

  80. Soderling TR. CaM-kinases: modulators of synaptic plasticity. Curr Opin Neurobiol 2000; 10: 375–380.

    Article  PubMed  CAS  Google Scholar 

  81. Fink CC, Meyer T. Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr Opin Neurobiol 2002; 12: 293–299.

    Article  PubMed  CAS  Google Scholar 

  82. Aakalu G, Smith WB, Nguyen N, Jiang C, Schuman EM. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 2001; 30: 489–502.

    Article  PubMed  CAS  Google Scholar 

  83. Richter JD. Think globally, translate locally: what mitotic spindles and neuronal synapses have in common. Proc Natl Acad Sci USA 2001; 98: 7069–7071.

    Article  PubMed  CAS  Google Scholar 

  84. Wiederkehr A, Staple J, Caroni P. The motility-associated proteins GAP-43, MARCKS, and CAP-23 share unique targeting and surface activity-inducing properties. Exp Cell Res 1997; 236: 103–116.

    Article  PubMed  CAS  Google Scholar 

  85. Matsuoka Y, Li X, Bennett V. Adducin is an in vivo substrate for protein kinase C: phosphorylation in the MARCKS-related domain inhibits activity in promoting spectrin-actin complexes and occurs in many cells, including dendritic spines of neurons. J Cell Biol 1998; 142: 485–497.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Metzger PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, F., Kapfhammer, J.P. Protein kinase C: Its role in activity-dependent purkinje cell dendritic development and plasticity. Cerebellum 2, 206–214 (2003). https://doi.org/10.1080/14734220310016150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310016150

Keywords

Navigation