Semin Reprod Med 2009; 27(3): 229-239
DOI: 10.1055/s-0029-1216276
© Thieme Medical Publishers

Sex, Sex Steroids, and Brain Injury

Paco S. Herson1 , Ines P. Koerner1 , Patricia D. Hurn1 , 2 , 3
  • 1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
  • 2Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
  • 3Department of Neurology, Oregon Health & Science University, Portland, Oregon
Further Information

Publication History

Publication Date:
28 April 2009 (online)

ABSTRACT

Biologic sex and sex steroids are important factors in clinical and experimental stroke and traumatic brain injury (TBI). Laboratory data strongly show that progesterone treatment after TBI reduces edema, improves outcomes, and restores blood-brain barrier function. Clinical studies to date agree with these data, and there are ongoing human trials for progesterone treatment after TBI. Estrogen has accumulated an impressive reputation as a neuroprotectant when evaluated at physiologically relevant doses in laboratory studies of stroke, but translation to patients remains to be shown. The role of androgens in male stroke or TBI is understudied and important to pursue given the epidemiology of stroke and trauma in men. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. This review evaluates key evidence and highlights the importance of the platform on which brain injury occurs (i.e., genetic sex and hormonal modulators).

REFERENCES

  • 1 Giroud M, Milan C, Beuriat P et al.. Incidence and survival rates during a two-year period of intracerebral and subarachnoid haemorrhages, cortical infarcts, lacunes and transient ischaemic attacks. the stroke registry of dijon: 1985–1989.  Int J Epidemiol. 1991;  20 892-899
  • 2 Sacco R L, Boden-Albala B, Gan R et al.. Stroke incidence among white, black, and hispanic residents of an urban community: the Northern Manhattan Stroke Study.  Am J Epidemiol. 1998;  147 259-268
  • 3 Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans.  Stroke. 1976;  7 46-53
  • 4 Hall E D, Pazara K E, Braughler J M. Effects of tirilazad mesylate on postischemic brain lipid peroxidation and recovery of extracellular calcium in gerbils.  Stroke. 1991;  22 361-366
  • 5 Alkayed N J, Harukuni I, Kimes A S, London E D, Traystman R J, Hurn P D. Gender-linked brain injury in experimental stroke.  Stroke. 1998;  29 159-166
  • 6 Carswell H V, Anderson N H, Clark J S et al.. Genetic and gender influences on sensitivity to focal cerebral ischemia in the stroke-prone spontaneously hypertensive rat.  Hypertension. 1999;  33 681-685
  • 7 Alkayed N J, Murphy S J, Traystman R J, Hurn P D, Miller V M. Neuroprotective effects of female gonadal steroids in reproductively senescent female rats.  Stroke. 2000;  31 161-168
  • 8 Li X, Blizzard K K, Zeng Z, DeVries A C, Hurn P D, McCullough L D. Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender.  Exp Neurol. 2004;  187 94-104
  • 9 Bramlett H M, Dietrich W D. Neuropathological protection after traumatic brain injury in intact female rats versus males or ovariectomized females.  J Neurotrauma. 2001;  18 891-900
  • 10 Toung T K, Hurn P D, Traystman R J, Sieber F E. Estrogen decreases infarct size after temporary focal ischemia in a genetic model of type 1 diabetes mellitus.  Stroke. 2000;  31 2701-2706
  • 11 Vannucci S J, Willing L B, Goto S et al.. Experimental stroke in the female diabetic, db/db, mouse.  J Cereb Blood Flow Metab. 2001;  21 52-60
  • 12 Lieb K, Andrae J, Reisert I, Pilgrim C. Neurotoxicity of dopamine and protective effects of the NMDA receptor antagonist AP-5 differ between male and female dopaminergic neurons.  Exp Neurol. 1995;  134 222-229
  • 13 Zhang L, Li P P, Feng X, Barker J L, Smith S V, Rubinow D R. Sex-related differences in neuronal cell survival and signaling in rats.  Neurosci Lett. 2003;  337 65-68
  • 14 Du L, Bayir H, Lai Y et al.. Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway.  J Biol Chem. 2004;  279 38563-38570
  • 15 Liu M, Hurn P D, Roselli C E, Alkayed N J. Role of P450 aromatase in sex-specific astrocytic cell death.  J Cereb Blood Flow Metab. 2007;  27 135-141
  • 16 Li H, Pin S, Zeng Z, Wang M M, Andreasson K A, McCullough L D. Sex differences in cell death.  Ann Neurol. 2005;  58 317-321
  • 17 Baulieu E E, Robel P, Schumacher M. Neurosteroids: beginning of the story.  Int Rev Neurobiol. 2001;  46 1-32
  • 18 Schumacher M, Baulieu E E. Neurosteroids: synthesis and functions in the central and peripheral nervous systems.  Ciba Found Symp. 1995;  191 90-106
  • 19 Jung-Testas I, Schumacher M, Robel P, Baulieu E E. The neurosteroid progesterone increases the expression of myelin proteins (MBP and CNPase) in rat oligodendrocytes in primary culture.  Cell Mol Neurobiol. 1996;  16 439-443
  • 20 Schumacher M, Robel P, Baulieu E E. Development and regeneration of the nervous system: a role for neurosteroids.  Dev Neurosci. 1996;  18 6-21
  • 21 Baulieu E E. Neurosteroids: of the nervous system, by the nervous system, for the nervous system.  Recent Prog Horm Res. 1997;  52 1-32
  • 22 De Nicola A F, Gonzalez S L, Labombarda F et al.. Progesterone treatment of spinal cord injury: effects on receptors, neurotrophins, and myelination.  J Mol Neurosci. 2006;  28 3-15
  • 23 Labombarda F, Gonzalez S, Gonzalez Deniselle M C et al.. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord.  J Neurotrauma. 2006;  23 181-192
  • 24 Garcia-Estrada J, Del Rio J A, Luquin S, Soriano E, Garcia-Segura L M. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury.  Brain Res. 1993;  628 271-278
  • 25 Garcia-Estrada J, Luquin S, Fernandez A M, Garcia-Segura L M. Dehydroepiandrosterone, pregnenolone and sex steroids down-regulate reactive astroglia in the male rat brain after a penetrating brain injury.  Int J Dev Neurosci. 1999;  17 145-151
  • 26 O'Connor C A, Cernak I, Johnson F, Vink R. Effects of progesterone on neurologic and morphologic outcome following diffuse traumatic brain injury in rats.  Exp Neurol. 2007;  205 145-153
  • 27 Stein D G. Progesterone exerts neuroprotective effects after brain injury.  Brain Res Rev. 2008;  57 386-397
  • 28 Schumacher M, Guennoun R, Stein D G, De Nicola A F. Progesterone: therapeutic opportunities for neuroprotection and myelin repair.  Pharmacol Ther. 2007;  116 77-106
  • 29 Jiang N, Chopp M, Stein D, Feit H. Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats.  Brain Res. 1996;  735 101-107
  • 30 Roof R L, Duvdevani R, Heyburn J W, Stein D G. Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective.  Exp Neurol. 1996;  138 246-251
  • 31 Rossouw J E, Anderson G L, Prentice R L et al.. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial.  JAMA. 2002;  288 321-333
  • 32 Simon J A, Hsia J, Cauley J A et al.. Postmenopausal hormone therapy and risk of stroke: The Heart and Estrogen-Progestin Replacement Study (HERS).  Circulation. 2001;  103 638-642
  • 33 Hulley S, Grady D, Bush T et al.. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/Progestin Replacement Study (HERS) research group.  JAMA. 1998;  280 605-613
  • 34 Nilsen J, Brinton R D. Divergent impact of progesterone and medroxyprogesterone acetate (Provera) on nuclear mitogen-activated protein kinase signaling.  Proc Natl Acad Sci U S A. 2003;  100 10506-10511
  • 35 Nilsen J, Morales A, Brinton R D. Medroxyprogesterone acetate exacerbates glutamate excitotoxicity.  Gynecol Endocrinol. 2006;  22 355-361
  • 36 Nilsen J, Brinton R D. Impact of progestins on estradiol potentiation of the glutamate calcium response.  Neuroreport. 2002;  13 825-830
  • 37 Littleton-Kearney M T, Klaus J A, Hurn P D. Effects of combined oral conjugated estrogens and medroxyprogesterone acetate on brain infarction size after experimental stroke in rat.  J Cereb Blood Flow Metab. 2005;  25 421-426
  • 38 Toung T J, Chen T Y, Littleton-Kearney M T, Hurn P D, Murphy S J. Effects of combined estrogen and progesterone on brain infarction in reproductively senescent female rats.  J Cereb Blood Flow Metab. 2004;  24 1160-1166
  • 39 Corpechot C, Robel P, Axelson M, Sjovall J, Baulieu E E. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain.  Proc Natl Acad Sci U S A. 1981;  78 4704-4707
  • 40 Corpechot C, Synguelakis M, Talha S et al.. Pregnenolone and its sulfate ester in the rat brain.  Brain Res. 1983;  270 119-125
  • 41 Mellon S H, Vaudry H. Biosynthesis of neurosteroids and regulation of their synthesis.  Int Rev Neurobiol. 2001;  46 33-78
  • 42 Baulieu E E, Robel P. Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids.  Proc Natl Acad Sci U S A. 1998;  95 4089-4091
  • 43 Stoffel-Wagner B. Neurosteroid biosynthesis in the human brain and its clinical implications.  Ann N Y Acad Sci. 2003;  1007 64-78
  • 44 Watzka M, Bidlingmaier F, Schramm J, Klingmuller D, Stoffel-Wagner B. Sex- and age-specific differences in human brain CYP11A1 mRNA expression.  J Neuroendocrinol. 1999;  11 901-905
  • 45 Lavaque E, Mayen A, Azcoitia I, Tena-Sempere M, Garcia-Segura L M. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system.  J Neurobiol. 2006;  66 308-318
  • 46 Kimonides V G, Khatibi N H, Svendsen C N, Sofroniew M V, Herbert J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity.  Proc Natl Acad Sci U S A. 1998;  95 1852-1857
  • 47 Mao X, Barger S W. Neuroprotection by dehydroepiandrosterone-sulfate: role of an NFkappaB-like factor.  Neuroreport. 1998;  9 759-763
  • 48 Cardounel A, Regelson W, Kalimi M. Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: mechanism of action.  Proc Soc Exp Biol Med. 1999;  222 145-149
  • 49 Kaasik A, Kalda A, Jaako K, Zharkovsky A. Dehydroepiandrosterone sulphate prevents oxygen-glucose deprivation-induced injury in cerebellar granule cell culture.  Neuroscience. 2001;  102 427-432
  • 50 Li Z, Zhou R, Cui S et al.. Dehydroepiandrosterone sulfate prevents ischemia-induced impairment of long-term potentiation in rat hippocampal CA1 by up-regulating tyrosine phosphorylation of NMDA receptor.  Neuropharmacology. 2006;  51 958-966
  • 51 Weaver Jr C E, Marek P, Park-Chung M, Tam S W, Farb D H. Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-D-aspartate receptor.  Proc Natl Acad Sci U S A. 1997;  94 10450-10454
  • 52 Gursoy E, Cardounel A, Kalimi M. Pregnenolone protects mouse hippocampal (HT-22) cells against glutamate and amyloid beta protein toxicity.  Neurochem Res. 2001;  26 15-21
  • 53 Gibson C L, Murphy S P. Progesterone enhances functional recovery after middle cerebral artery occlusion in male mice.  J Cereb Blood Flow Metab. 2004;  24 805-813
  • 54 Gibson C L, Constantin D, Prior M J, Bath P M, Murphy S P. Progesterone suppresses the inflammatory response and nitric oxide synthase-2 expression following cerebral ischemia.  Exp Neurol. 2005;  193 522-530
  • 55 Alkayed N J, Murphy S J, Traystman R J, Hurn P D, Miller V M. Neuroprotective effects of female gonadal steroids in reproductively senescent female rats.  Stroke. 2000;  31 161-168
  • 56 Murphy S J, Littleton-Kearney M T, Hurn P D. Progesterone administration during reperfusion, but not preischemia alone, reduces injury in ovariectomized rats.  J Cereb Blood Flow Metab. 2002;  22 1181-1188
  • 57 Sayeed I, Guo Q, Hoffman S W, Stein D G. Allopregnanolone, a progesterone metabolite, is more effective than progesterone in reducing cortical infarct volume after transient middle cerebral artery occlusion.  Ann Emerg Med. 2006;  47 381-389
  • 58 Chen Z, Yuhanna I S, Galcheva-Gargova Z, Karas R H, Mendelsohn M E, Shaul P W. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen.  J Clin Invest. 1999;  103 401-406
  • 59 Kumon Y, Kim S C, Tompkins P, Stevens A, Sakaki S, Loftus C M. Neuroprotective effect of postischemic administration of progesterone in spontaneously hypertensive rats with focal cerebral ischemia.  J Neurosurg. 2000;  92 848-852
  • 60 Morali G, Letechipia-Vallejo G, Lopez-Loeza E, Montes P, Hernandez-Morales L, Cervantes M. Post-ischemic administration of progesterone in rats exerts neuroprotective effects on the hippocampus.  Neurosci Lett. 2005;  382 286-290
  • 61 Cervantes M, Gonzalez-Vidal M D, Ruelas R, Escobar A, Morali G. Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus.  Arch Med Res. 2002;  33 6-14
  • 62 Murphy S J, Traystman R J, Hurn P D, Duckles S P. Progesterone exacerbates striatal stroke injury in progesterone-deficient female animals.  Stroke. 2000;  31 1173-1178
  • 63 Roof R L, Duvdevani R, Stein D G. Gender influences outcome of brain injury: progesterone plays a protective role.  Brain Res. 1993;  607 333-336
  • 64 Roof R L, Duvdevani R, Braswell L, Stein D G. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats.  Exp Neurol. 1994;  129 64-69
  • 65 Robertson C L, Puskar A, Hoffman G E, Murphy A Z, Saraswati M, Fiskum G. Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats.  Exp Neurol. 2006;  197 235-243
  • 66 Wright D W, Bauer M E, Hoffman S W, Stein D G. Serum progesterone levels correlate with decreased cerebral edema after traumatic brain injury in male rats.  J Neurotrauma. 2001;  18 901-909
  • 67 Goss C W, Hoffman S W, Stein D G. Behavioral effects and anatomic correlates after brain injury: a progesterone dose-response study.  Pharmacol Biochem Behav. 2003;  76 231-242
  • 68 Shear D A, Galani R, Hoffman S W, Stein D G. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury.  Exp Neurol. 2002;  178 59-67
  • 69 Pan D S, Liu W G, Yang X F, Cao F. Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury.  Biomed Environ Sci. 2007;  20 432-438
  • 70 Chen G, Shi J, Jin W et al.. Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion.  Ann Clin Lab Sci. 2008;  38 65-74
  • 71 Wright D W, Kellermann A L, Hertzberg V S et al.. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury.  Ann Emerg Med. 2007;  49 391-402
  • 72 Xiao G, Wei J, Yan W, Wang W, Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial.  Crit Care. 2008;  12 1-10
  • 73 Betz A L, Coester H C. Effect of steroids on edema and sodium uptake of the brain during focal ischemia in rats.  Stroke. 1990;  21 1199-1204
  • 74 Guo Q, Sayeed I, Baronne L M, Hoffman S W, Guennoun R, Stein D G. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats.  Exp Neurol. 2006;  198 469-478
  • 75 Yao X L, Liu J, Lee E, Ling G S, McCabe J T. Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats.  J Neurotrauma. 2005;  22 656-668
  • 76 Djebaili M, Guo Q, Pettus E H, Hoffman S W, Stein D G. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats.  J Neurotrauma. 2005;  22 106-118
  • 77 Cai W, Zhu Y, Furuya K, Li Z, Sokabe M, Chen L. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage.  Neuropharmacology. 2008;  55 127-138
  • 78 Roof R L, Hoffman S W, Stein D G. Progesterone protects against lipid peroxidation following traumatic brain injury in rats.  Mol Chem Neuropathol. 1997;  31 1-11
  • 79 Miller L, Hunt J S. Regulation of TNF-alpha production in activated mouse macrophages by progesterone.  J Immunol. 1998;  160 5098-5104
  • 80 Drew P D, Chavis J A. Female sex steroids: effects upon microglial cell activation.  J Neuroimmunol. 2000;  111 77-85
  • 81 He J, Hoffman S W, Stein D G. Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury.  Restor Neurol Neurosci. 2004;  22 19-31
  • 82 Pettus E H, Wright D W, Stein D G, Hoffman S W. Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury.  Brain Res. 2005;  1049 112-119
  • 83 Chan J R, Phillips II L J, Glaser M. Glucocorticoids and progestins signal the initiation and enhance the rate of myelin formation.  Proc Natl Acad Sci U S A. 1998;  95 10459-10464
  • 84 Koenig H L, Schumacher M, Ferzaz B et al.. Progesterone synthesis and myelin formation by Schwann cells.  Science. 1995;  268 1500-1503
  • 85 Ghoumari A M, Ibanez C, El-Etr M et al.. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum.  J Neurochem. 2003;  86 848-859
  • 86 Ghoumari A M, Baulieu E E, Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures.  Neuroscience. 2005;  135 47-58
  • 87 Ibanez C, Shields S A, El-Etr M, Baulieu E E, Schumacher M, Franklin R J. Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats.  Neuropathol Appl Neurobiol. 2004;  30 80-89
  • 88 Ardeshiri A, Kelley M H, Korner I P, Hurn P D, Herson P S. Mechanism of progesterone neuroprotection of rat cerebellar Purkinje cells following oxygen-glucose deprivation.  Eur J Neurosci. 2006;  24 2567-2574
  • 89 Brinton R D, Wang J M. Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer's disease: allopregnanolone as a proof of concept neurogenic agent.  Curr Alzheimer Res. 2006;  3 185-190
  • 90 Mellon S H, Gong W, Schonemann M D. Endogenous and synthetic neurosteroids in treatment of Niemann-Pick type C disease.  Brain Res Rev. 2008;  57 410-420
  • 91 Ciriza I, Azcoitia I, Garcia-Segura L M. Reduced progesterone metabolites protect rat hippocampal neurones from kainic acid excitotoxicity in vivo.  J Neuroendocrinol. 2004;  16 58-63
  • 92 Djebaili M, Hoffman S W, Stein D G. Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex.  Neuroscience. 2004;  123 349-359
  • 93 Wang J M, Johnston P B, Ball B G, Brinton R D. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression.  J Neurosci. 2005;  25 4706-4718
  • 94 Xilouri M, Avlonitis N, Calogeropoulou T, Papazafiri P. Neuroprotective effects of steroid analogues on P19-N neurons.  Neurochem Int. 2007;  50 660-670
  • 95 Charalampopoulos I, Tsatsanis C, Dermitzaki E et al.. Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic bcl-2 proteins.  Proc Natl Acad Sci U S A. 2004;  101 8209-8214
  • 96 Charalampopoulos I, Alexaki V I, Tsatsanis C et al.. Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging.  Ann N Y Acad Sci. 2006;  1088 139-152
  • 97 Belelli D, Lambert J J. Neurosteroids: endogenous regulators of the GABA(A) receptor.  Nat Rev Neurosci. 2005;  6 565-575
  • 98 Carswell H V, Dominiczak A F, Macrae I M. Estrogen status affects sensitivity to focal cerebral ischemia in stroke-prone spontaneously hypertensive rats.  Am J Physiol Heart Circ Physiol. 2000;  278 H290-H294
  • 99 Hall E D, Pazara K E, Linseman K L. Sex differences in postischemic neuronal necrosis in gerbils.  J Cereb Blood Flow Metab. 1991;  11 292-298
  • 100 Hurn P D, Macrae I M. Estrogen as a neuroprotectant in stroke.  J Cereb Blood Flow Metab. 2000;  20 631-652
  • 101 Toung T J, Traystman R J, Hurn P D. Estrogen-mediated neuroprotection after experimental stroke in male rats.  Stroke. 1998;  29 1666-1670
  • 102 Hawk T, Zhang Y Q, Rajakumar G, Day A L, Simpkins J W. Testosterone increases and estradiol decreases middle cerebral artery occlusion lesion size in male rats.  Brain Res. 1998;  796 296-298
  • 103 Jover T, Tanaka H, Calderone A et al.. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1.  J Neurosci. 2002;  22 2115-2124
  • 104 Gulinello M, Lebesgue D, Jover-Mengual T, Zukin R S, Etgen A M. Acute and chronic estradiol treatments reduce memory deficits induced by transient global ischemia in female rats.  Horm Behav. 2006;  49 246-260
  • 105 Carswell H V, Bingham D, Wallace K et al.. Differential effects of 17beta-estradiol upon stroke damage in stroke prone and normotensive rats.  J Cereb Blood Flow Metab. 2004;  24 298-304
  • 106 Bingham D, Macrae I M, Carswell H V. Detrimental effects of 17beta-oestradiol after permanent middle cerebral artery occlusion.  J Cereb Blood Flow Metab. 2005;  25 414-420
  • 107 Vergouwen M D, Anderson R E, Meyer F B. Gender differences and the effects of synthetic exogenous and non-synthetic estrogens in focal cerebral ischemia.  Brain Res. 2000;  878 88-97
  • 108 Gordon K B, Macrae I M, Carswell H V. Effects of 17beta-oestradiol on cerebral ischaemic damage and lipid peroxidation.  Brain Res. 2005;  1036 155-162
  • 109 Sohrabji F, Bake S. Age-related changes in neuroprotection: is estrogen pro-inflammatory for the reproductive senescent brain?.  Endocrine. 2006;  29 191-197
  • 110 Suzuki S, Brown C M, Dela Cruz C D, Yang E, Bridwell D A, Wise P M. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions.  Proc Natl Acad Sci U S A. 2007;  104 6013-6018
  • 111 Rusa R, Alkayed N J, Crain B J et al.. 17beta-Estradiol reduces stroke injury in estrogen-deficient female animals.  Stroke. 1999;  30 1665-1670
  • 112 Dubal D B, Kashon M L, Pettigrew L C et al.. Estradiol protects against ischemic injury.  J Cereb Blood Flow Metab. 1998;  18 1253-1258
  • 113 Liu R, Wen Y, Perez E et al.. 17beta-Estradiol attenuates blood-brain barrier disruption induced by cerebral ischemia-reperfusion injury in female rats.  Brain Res. 2005;  1060 55-61
  • 114 O'Donnell M E, Lam T I, Tran L Q, Foroutan S, Anderson S E. Estradiol reduces activity of the blood-brain barrier na-K-cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion.  J Cereb Blood Flow Metab. 2006;  26 1234-1249
  • 115 Pelligrino D A, Santizo R, Baughman V L, Wang Q. Cerebral vasodilating capacity during forebrain ischemia: effects of chronic estrogen depletion and repletion and the role of neuronal nitric oxide synthase.  Neuroreport. 1998;  9 3285-3291
  • 116 Hurn P D, Littleton-Kearney M T, Kirsch J R, Dharmarajan A M, Traystman R J. Postischemic cerebral blood flow recovery in the female: effect of 17 beta-estradiol.  J Cereb Blood Flow Metab. 1995;  15 666-672
  • 117 Mori M, Tsukahara F, Yoshioka T, Irie K, Ohta H. Suppression by 17beta-estradiol of monocyte adhesion to vascular endothelial cells is mediated by estrogen receptors.  Life Sci. 2004;  75 599-609
  • 118 Wen Y, Yang S, Liu R et al.. Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia.  Brain Res. 2004;  1008 147-154
  • 119 Alkayed N J, Goto S, Sugo N et al.. Estrogen and bcl-2: gene induction and effect of transgene in experimental stroke.  J Neurosci. 2001;  21 7543-7550
  • 120 Xu Y, Zhang W, Klaus J et al.. Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection.  Proc Natl Acad Sci U S A. 2006;  103 14489-14494
  • 121 Keller J N, Germeyer A, Begley J G, Mattson M P. 17beta-Estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport, and glutamate transport induced by amyloid beta-peptide and iron.  J Neurosci Res. 1997;  50 522-530
  • 122 Vedder H, Anthes N, Stumm G, Wurz C, Behl C, Krieg J C. Estrogen hormones reduce lipid peroxidation in cells and tissues of the central nervous system.  J Neurochem. 1999;  72 2531-2538
  • 123 Behl C, Manthey D. Neuroprotective activities of estrogen: an update.  J Neurocytol. 2000;  29 351-358
  • 124 Connell B J, Crosby K M, Richard M J, Mayne M B, Saleh T M. Estrogen-mediated neuroprotection in the cortex may require NMDA receptor activation.  Neuroscience. 2007;  146 160-169
  • 125 Weaver Jr C E, Park-Chung M, Gibbs T T, Farb D H. 17beta-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors.  Brain Res. 1997;  761 338-341
  • 126 Suzuki S, Gerhold L M, Bottner M et al.. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta.  J Comp Neurol. 2007;  500 1064-1075
  • 127 Shughrue P J, Bushnell C D, Dorsa D M. Estrogen receptor messenger ribonucleic acid in female rat brain during the estrous cycle: a comparison with ovariectomized females and intact males.  Endocrinology. 1992;  131 381-388
  • 128 Mor G, Nilsen J, Horvath T et al.. Estrogen and microglia: a regulatory system that affects the brain.  J Neurobiol. 1999;  40 484-496
  • 129 Azcoitia I, Sierra A, Garcia-Segura L M. Localization of estrogen receptor beta-immunoreactivity in astrocytes of the adult rat brain.  Glia. 1999;  26 260-267
  • 130 Sawada M, Alkayed N J, Goto S et al.. Estrogen receptor antagonist ICI182,780 exacerbates ischemic injury in female mouse.  J Cereb Blood Flow Metab. 2000;  20 112-118
  • 131 Sampei K, Goto S, Alkayed N J et al.. Stroke in estrogen receptor-alpha-deficient mice.  Stroke. 2000;  31 738-744
  • 132 Dubal D B, Zhu H, Yu J et al.. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury.  Proc Natl Acad Sci U S A. 2001;  98 1952-1957
  • 133 Carswell H V, Macrae I M, Gallagher L, Harrop E, Horsburgh K J. Neuroprotection by a selective oestrogen receptor {beta} agonist in a mouse model of global ischaemia.  Am J Physiol Heart Circ Physiol. 2004;  287 H1501-1504
  • 134 Jeppesen L L, Jorgensen H S, Nakayama H, Raaschou H O, Olsen T S, Winther K. Decreased serum testosterone in men with acute ischemic stroke.  Arterioscler Thromb Vasc Biol. 1996;  16 749-754
  • 135 Yang S H, Perez E, Cutright J et al.. Testosterone increases neurotoxicity of glutamate in vitro and ischemia-reperfusion injury in an animal model.  J Appl Physiol. 2002;  92 195-201
  • 136 Cheng J, Alkayed N J, Hurn P D. Deleterious effects of dihydrotestosterone on cerebral ischemic injury.  J Cereb Blood Flow Metab. 2007;  27 1553-1562
  • 137 Pan Y, Zhang H, Acharya A B, Patrick P H, Oliver D, Morley J E. Effect of testosterone on functional recovery in a castrate male rat stroke model.  Brain Res. 2005;  1043 195-204
  • 138 Jones K J. Gonadal steroids as promoting factors in axonal regeneration.  Brain Res Bull. 1993;  30 491-498
  • 139 Kujawa K A, Jacob J M, Jones K J. Testosterone regulation of the regenerative properties of injured rat sciatic motor neurons.  J Neurosci Res. 1993;  35 268-273
  • 140 Tanzer L, Jones K J. Gonadal steroid regulation of hamster facial nerve regeneration: effects of dihydrotestosterone and estradiol.  Exp Neurol. 1997;  146 258-264
  • 141 Chen R, Cohen L G, Hallett M. Nervous system reorganization following injury.  Neuroscience. 2002;  111 761-773

Patricia D HurnPh.D. 

Department of Anesthesiology and Perioperative Medicine

UHS-2, 3181 SW Sam Jackson Park Road., Portland OR 97239-3098

Email: hurnp@ohsu.edu

    >