Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia

Abstract

Postmortem studies have revealed reduced densities of dendritic spines in the dorsal lateral prefrontal cortex (DLPFC) of subjects with schizophrenia. However, the molecular mechanisms that might contribute to these alterations are unknown. Recent studies of the intracellular signals that regulate spine dynamics have identified members of the RhoGTPase family (e.g., Cdc42, Rac1, RhoA) as critical regulators of spine structure. In addition, Duo and drebrin are spine-specific proteins that are critical for spine maintenance and spine formation, respectively. In order to determine whether the mRNA expression levels of Cdc42, Rac1, RhoA, Duo or drebrin are altered in schizophrenia, tissue sections containing DLPFC area 9 from 15 matched pairs of subjects with schizophrenia and control subjects were processed for in situ hybridization. Expression levels of these mRNAs were also correlated with DLPFC spine density in a subset of the same subjects. In order to assess the potential influence of antipsychotic medications on the expression of these mRNAs, similar studies were conducted in monkeys chronically exposed to haloperidol or olanzapine. The expression of each of these mRNAs was lower in the gray matter of the subjects with schizophrenia compared to the control subjects, although only the reductions in Cdc42 and Duo remained significant after corrections for multiple comparisons. In addition, spine density was strongly correlated with the expression levels of both Duo (r=0.73, P=0.007) and Cdc42 (r=0.71, P=0.009) mRNAs. In contrast, the expression levels of Cdc42 and Duo mRNAs were not altered in monkeys chronically exposed to antipsychotic medications. In conclusion, reduced expression of Cdc42 and Duo mRNAs may represent molecular mechanisms that contribute to the decreased density of dendritic spines in the DLPFC of subjects with schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rajkowska G, Selemon LD, Goldman-Rakic PS . Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224.

    Article  CAS  Google Scholar 

  2. Pierri JN, Volk CLE, Auh S, Sampson A, Lewis DA . Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 2001; 58: 466–473.

    Article  CAS  Google Scholar 

  3. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744.

    Article  Google Scholar 

  4. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.

    Article  CAS  Google Scholar 

  5. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.

    Article  CAS  Google Scholar 

  6. Kalus P, Müller TJ, Zuschratter W, Senitz D . The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. NeuroReport 2000; 11: 3621–3625.

    Article  CAS  Google Scholar 

  7. Broadbelt K, Byne W, Jones LB . Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 2002; 58: 75–81.

    Article  Google Scholar 

  8. Fischer M, Kaech S, Knutti D, Matus A . Rapid actin-based plasticity in dendritic spines. Neuron 1998; 20: 847–854.

    Article  CAS  Google Scholar 

  9. Rao A, Craig AM . Signaling between the actin cytoskeleton and the postsynaptic density of dendritic spines. Hippocampus 2000; 10: 527–541.

    Article  CAS  Google Scholar 

  10. Avalos AM, Labra CV, Quest AF, Leyton L . Signaling triggered by Thy-1 interaction with beta 3 integrin on astrocytes is an essential step towards unraveling neuronal Thy-1 function. Biol Res 2002; 35: 231–238.

    Article  CAS  Google Scholar 

  11. Luo L . Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000; 1: 173–180.

    Article  CAS  Google Scholar 

  12. Hall A . Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–514.

    Article  CAS  Google Scholar 

  13. Ramakers GJA . Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci 2002; 25: 191–199.

    Article  CAS  Google Scholar 

  14. Nobes CD, Hall A . Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81: 53–62.

    Article  CAS  Google Scholar 

  15. Scott EK, Reuter JE, Luo L . Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. J Neurosci 2003; 23: 3118–3123.

    Article  CAS  Google Scholar 

  16. Nakayama AY, Harms MB, Luo L . Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 2000; 20: 5329–5338.

    Article  CAS  Google Scholar 

  17. Li Z, Aizenman C, Cline HT . Regulation of Rho GTPases by crosstalk and neuronal activity in vivo. Neuron 2002; 33: 741–750.

    Article  CAS  Google Scholar 

  18. Penzes P, Johnson RC, Alam MR, Kambampati V, Mains RE, Eipper BA . An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction. J Biol Chem 2000; 275: 6395–6403.

    Article  CAS  Google Scholar 

  19. Penzes P, Johnson RC, Sattler R, Zhang X, Huganir RL, Kambampati V et al. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 2001; 29: 229–242.

    Article  CAS  Google Scholar 

  20. Ma XM, Huang J, Wang Y, Eipper BA, Mains RE . Kalirin, a multifunctional Rho guanine nucleotide exchange factor, is necessary for maintenance of hippocampal pyramidal neuron dendrites and dendritic spines. J Neurosci 2003; 23: 10593–10603.

    Article  CAS  Google Scholar 

  21. Hayashi K, Ishikawa R, Ye LH, He XL, Takata K, Kohama K et al. Modulatory role of drebrin on the cytoskeleton within dendritic spines in the rat cerebral cortex. J Neurosci 1996; 16: 7161–7170.

    Article  CAS  Google Scholar 

  22. Takahashi H, Sekino Y, Tanaka S, Mizui T, Kishi S, Shirao T . Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. J Neurosci 2003; 23: 6586–6595.

    Article  CAS  Google Scholar 

  23. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  Google Scholar 

  24. American Psychiatric Association. DSM-IV Diagnostic and Statistical Manual of Mental Disorders. 4th edn. American Psychiatry Association: Washington, DC, 1994.

  25. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathological assessment of Alzheimer's disease. Neurology 1991; 41: 479–486.

    Article  CAS  Google Scholar 

  26. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA . Decreased GAD67 mRNA expression in a subset of prefrontal cortical GABA neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000; 57: 237–245.

    Article  CAS  Google Scholar 

  27. Pierri JN, Chaudry AS, Woo T-U, Lewis DA . Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 1999; 156: 1709–1719.

    CAS  Google Scholar 

  28. Dorph-Petersen K-A, Pierri JN, Perel JM, Sun Z, Sampson AR, Lewis DA . The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: A comparison of haloperidol and olanzapine in macaque monkeys. Neuropsychopharmacology 2005; 30: 1649–1661.

    Article  CAS  Google Scholar 

  29. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W . Applied Linear Statistical Models, 4th edn. McGraw-Hill: Boston, 1996.

    Google Scholar 

  30. Harrison PJ, Heath PR, Eastwood SL, Burnet PWJ, McDonald B, Pearson RCA . The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 1995; 200: 151–154.

    Article  CAS  Google Scholar 

  31. Hof PR, Haroutunian V, Friedrich Jr VL, Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  Google Scholar 

  32. Kolluri N, Sun Z, Sampson AR, Lewis DA . Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 2005; 162: 1200–1202.

    Article  Google Scholar 

  33. Law AJ, Hutchinson LJ, Burnet PW, Harrison PJ . Antipsychotics increase microtubule-associated protein 2 mRNA but not spinophilin mRNA in rat hippocampus and cortex. J Neurosci Res 2004; 76: 376–382.

    Article  CAS  Google Scholar 

  34. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN et al. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 2005; 25: 372–383.

    Article  CAS  Google Scholar 

  35. Dailey ME, Smith SJ . The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 1996; 16: 2983–2994.

    Article  CAS  Google Scholar 

  36. Carlisle HJ, Kennedy MB . Spine architecture and synaptic plasticity. Trends Neurosci 2005; 28: 182–187.

    Article  CAS  Google Scholar 

  37. Keshavan MS, Anderson S, Pettegrew JW . Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatry Res 1994; 28: 239–265.

    Article  CAS  Google Scholar 

  38. Jourdain P, Fukunaga K, Muller D . Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci 2003; 23: 10645–10649.

    Article  CAS  Google Scholar 

  39. Melchitzky DS, Sesack SR, Lewis DA . Parvalbumin-immunoreactive axon terminals in macaque monkey and human prefrontal cortex: laminar, regional and target specificity of Type I and Type II synapses. J Comp Neurol 1999; 408: 11–22.

    Article  CAS  Google Scholar 

  40. Erickson SL, Lewis DA . Cortical connections of the lateral mediodorsal thalamus in cynomolgus monkeys. J Comp Neurol 2004; 473: 107–127.

    Article  Google Scholar 

  41. Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E et al. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 1999; 45: 1128–1137.

    Article  CAS  Google Scholar 

  42. Pakkenberg B . Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990; 47: 1023–1028.

    Article  CAS  Google Scholar 

  43. Young KA, Manaye KF, Liang C-L, Hicks PB, German DC . Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 2000; 47: 944–953.

    Article  CAS  Google Scholar 

  44. Popken GJ, Bunney Jr WE, Potkin SG, Jones EG . Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 2000; 97: 9276–9280.

    Article  CAS  Google Scholar 

  45. Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL et al. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 2002; 159: 59–65.

    Article  Google Scholar 

  46. Cullen TJ, Walker MA, Parkinson N, Craven R, Crow TJ, Esiri MM et al. A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 2003; 60: 157–166.

    Article  CAS  Google Scholar 

  47. Dorph-Petersen K-A, Pierri JN, Sun Z, Sampson AR, Lewis DA . Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 2004; 472: 449–462.

    Article  Google Scholar 

  48. Young KA, Holcomb LA, Yazdani U, Hicks PB, German DC . Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry 2004; 161: 1270–1277.

    Article  Google Scholar 

  49. Pucak ML, Levitt JB, Lund JS, Lewis DA . Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. J Comp Neurol 1996; 376: 614–630.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mary Brady and Melissa Macioce for expert technical assistance. This work was supported by NIH Grants P50 MH45156 (DAL) and T32 MH18273 (JJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, J., Hashimoto, T. & Lewis, D. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 11, 557–566 (2006). https://doi.org/10.1038/sj.mp.4001792

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001792

Keywords

This article is cited by

Search

Quick links