Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence

A Corrigendum to this article was published on 29 March 2005

Abstract

This review critically summarizes the neuropathology and genetics of schizophrenia, the relationship between them, and speculates on their functional convergence. The morphological correlates of schizophrenia are subtle, and range from a slight reduction in brain size to localized alterations in the morphology and molecular composition of specific neuronal, synaptic, and glial populations in the hippocampus, dorsolateral prefrontal cortex, and dorsal thalamus. These findings have fostered the view of schizophrenia as a disorder of connectivity and of the synapse. Although attractive, such concepts are vague, and differentiating primary events from epiphenomena has been difficult. A way forward is provided by the recent identification of several putative susceptibility genes (including neuregulin, dysbindin, COMT, DISC1, RGS4, GRM3, and G72). We discuss the evidence for these and other genes, along with what is known of their expression profiles and biological roles in brain and how these may be altered in schizophrenia. The evidence for several of the genes is now strong. However, for none, with the likely exception of COMT, has a causative allele or the mechanism by which it predisposes to schizophrenia been identified. Nevertheless, we speculate that the genes may all converge functionally upon schizophrenia risk via an influence upon synaptic plasticity and the development and stabilization of cortical microcircuitry. NMDA receptor-mediated glutamate transmission may be especially implicated, though there are also direct and indirect links to dopamine and GABA signalling. Hence, there is a correspondence between the putative roles of the genes at the molecular and synaptic levels and the existing understanding of the disorder at the neural systems level. Characterization of a core molecular pathway and a ‘genetic cytoarchitecture’ would be a profound advance in understanding schizophrenia, and may have equally significant therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hardy J, Allsop D . Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 1991; 12: 383–388.

    Article  CAS  PubMed  Google Scholar 

  2. Hardy J, Selkoe DJ . The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356.

    Article  CAS  PubMed  Google Scholar 

  3. Harrison PJ . The neuropathology of schizophrenia—a critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    Article  PubMed  Google Scholar 

  4. Pearlson GD, Marsh L . Structural brain imaging in schizophrenia: a selective review. Biol Psychiatry 1999; 46: 627–649.

    Article  CAS  PubMed  Google Scholar 

  5. Harrison PJ, Roberts GW . The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, UK, 2000.

  6. Shenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harrison PJ, Lewis DA . Neuropathology of schizophrenia. In: Hirsch S, Weinberger DR (eds). Schizophrenia, 2nd edn. Blackwell Science: Oxford, UK, 2003 pp 310–325.

    Chapter  Google Scholar 

  8. Liddle P, Pantelis C . Brain imaging in schizophrenia. In: Hirsch S, Weinberger DR (eds). Schizophrenia, 2nd edn. Blackwell Science: Oxford, UK, 2003 pp 403–417.

    Chapter  Google Scholar 

  9. Lawrie SM, Abukmeil SS . Brain abnormality in schizophrenia—a systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998; 172: 110–120.

    Article  CAS  PubMed  Google Scholar 

  10. Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, Bullmore ET . Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16–25.

    Article  CAS  PubMed  Google Scholar 

  11. Harrison PJ, Freemantle N, Geddes JR . Meta-analysis of brain weight in schizophrenia. Schizophr Res 2003; 64: 25–34.

    Article  PubMed  Google Scholar 

  12. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ . Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging—a meta-analytic study. Arch Gen Psychiatry 1998; 55: 433–440.

    Article  CAS  PubMed  Google Scholar 

  13. Heckers S . Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 2001; 11: 520–528.

    Article  CAS  PubMed  Google Scholar 

  14. Davidson LL, Heinrichs RW . Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Res: Neuroimaging 2003; 122: 69–87.

    Article  PubMed  Google Scholar 

  15. Konick LC, Friedman L . Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 2001; 49: 28–38.

    Article  CAS  PubMed  Google Scholar 

  16. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 2003; 60: 878–888.

    Article  PubMed  Google Scholar 

  17. Kulynych JJ, Luevano LF, Jones DW, Weinberger DR . Cortical abnormality in schizophrenia: an in vivo application of the gyrification index. Biol Psychiatry 1997; 41: 995–999.

    Article  CAS  PubMed  Google Scholar 

  18. Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B et al. Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 2000; 157: 34–39.

    Article  CAS  PubMed  Google Scholar 

  19. Casanova MF, Rothberg B . Shape distortion of the hippocampus: a possible explanation of the pyramidal cell disarray reported in schizophrenia. Schizophr Res 2002; 55: 19–24.

    Article  PubMed  Google Scholar 

  20. Csernansky JG, Wang L, Jones D, Rastogi-Cruz D, Posener JA, Heydebrand G et al. Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry 2002; 159: 2000–2006.

    Article  PubMed  Google Scholar 

  21. Luchins DJ, Weinberger DR, Wyatt RJ . Schizophrenia: evidence of a subgroup with reversed cerebral asymmetry. Arch Gen Psychiatry 1979; 36: 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  22. Crow TJ, Ball J, Bloom SR, Brown R, Bruton CJ, Colter N et al. Schizophrenia as an anomaly of development of cerebral asymmetry. Arch Gen Psychiatry 1989; 46: 1145–1150.

    Article  CAS  PubMed  Google Scholar 

  23. Gur RE, Turetsky BI, Bilker W, Gur RC . Reduced gray matter volume in schizophrenia. Arch Gen Psychiatry 1999; 56: 905–911.

    Article  CAS  PubMed  Google Scholar 

  24. Zipursky RB, Lambe EK, Kapur S, Mikulis DJ . Cerebral gray matter volume deficits in first episode psychosis. Arch Gen Psychiatry 1998; 55: 540–546.

    Article  CAS  PubMed  Google Scholar 

  25. Szeszko PR, Goldberg E, Gunduz-Bruce H, Ashtari M, Robinson D, Malhotra AK et al. Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiatry 2003; 160: 2190–2197.

    Article  PubMed  Google Scholar 

  26. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 2003; 361: 281–288.

    Article  PubMed  Google Scholar 

  27. Lawrie SM, Whalley H, Kestelman JN, Abukmeil SS, Byrne M, Hodges A et al. Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 1999; 353: 30–33.

    Article  CAS  PubMed  Google Scholar 

  28. Staal WG, Pol HEH, Schnack HG, Hoogendoorn MLC, Jellema K, Kahn RS . Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 2000; 157: 416–421.

    Article  CAS  PubMed  Google Scholar 

  29. Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N et al. Left hippocampal volume as a vulnerability indicator for schizophrenia—a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 2002; 59: 839–849.

    Article  PubMed  Google Scholar 

  30. Harrison PJ . Brains at risk of schizophrenia. Lancet 1999; 353: 3–4.

    Article  CAS  PubMed  Google Scholar 

  31. Ron MA, Harvey I . The brain in schizophrenia. J Neurol Neurosurg Psychiatry 1990; 53: 725–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weinberger DR . From neuropathology to neurodevelopment. Lancet 1995; 346: 552–557.

    Article  CAS  PubMed  Google Scholar 

  33. Chua SE, McKenna PJ . A sceptical view of the neuropathology of schizophrenia. In: Harrison PJ, Roberts GW (eds) The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, UK, 2000 pp 291–338.

    Google Scholar 

  34. Davis KL, Buchsbaum MS, Shihabuddin L, Spiegel-Cohen J, Metzger M, Frecska E et al. Ventricular enlargement in poor-outcome schizophrenia. Biol Psychiatry 1998; 43: 783–793.

    Article  CAS  PubMed  Google Scholar 

  35. Baare WF, Hulshoff-Pol HE, Hijman R, Mali WP, Viergever MA, Kahn RS . Volumetric analysis of frontal lobe regions in schizophrenia: relation to cognitive function and symptomatology. Biol Psychiatry 1999; 45: 1597–1605.

    Article  CAS  PubMed  Google Scholar 

  36. Sigmundsson T, Suckling J, Maier M, Williams SCR, Bullmore E, Greenwood KE et al. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 2001; 158: 234–243.

    Article  CAS  PubMed  Google Scholar 

  37. DeLisi LE . Defining the course of brain structural change and plasticity in schizophrenia. Psychiatry Res Neuroimaging 1999; 92: 1–9.

    Article  CAS  Google Scholar 

  38. Weinberger DR, McClure RK . Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry—what is happening in the schizophrenic brain? Arch Gen Psychiatry 2002; 59: 553–558.

    Article  PubMed  Google Scholar 

  39. Mathalon DH, Rapoport JL, Davis KL, Krystal JH . Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry. Arch Gen Psychiatry 2003; 60: 846–848.

    Article  PubMed  Google Scholar 

  40. Baldessarini RJ, Hegarty JD, Bird ED, Benes FM . Meta-analysis of postmortem studies of Alzheimer's disease- like neuropathology in schizophrenia. Am J Psychiatry 1997; 154: 861–863.

    Article  CAS  PubMed  Google Scholar 

  41. Arnold SE, Trojanowski JQ, Gur RE, Blackwell P, Han LY, Choi C . Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998; 55: 225–232.

    Article  CAS  PubMed  Google Scholar 

  42. Jellinger KA, Gabriel E . No increased incidence of Alzheimer's disease in elderly schizophrenics. Acta Neuropathol 1999; 97: 165–169.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts GW, Harrison PJ . Gliosis and its implications for the disease process. In: Harrison PJ, Roberts GW (eds) The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, UK, 2000 pp 133–150.

    Google Scholar 

  44. Bruton CJ, Crow TJ, Frith CD, Johnstone EC, Owens DGC, Roberts GW . Schizophrenia and the brain: a prospective cliniconeuropathological study. Psychol Med 1990; 20: 285–304.

    Article  CAS  PubMed  Google Scholar 

  45. Arnold SE, Trojanowski JQ . Cognitive impairment in elderly schizophrenia: a dementia (still) lacking distinctive histopathology. Schizophr Bull 1996; 22: 5–9.

    Article  CAS  PubMed  Google Scholar 

  46. Harrison PJ . Schizophrenia and its dementia. In: Esiri MM, Lee V-MY, Trojanowski JQ (eds). The Neuropathology of Dementia, 2nd edn. Cambridge University Press: Cambridge, UK, 2004, pp 497–508.

    Chapter  Google Scholar 

  47. McClure RK, Lieberman JA . Neurodevelopmental and neurodegenerative hypotheses of schizophrenia: a review and critique. Curr Opin Psychiatry 2003; 16(Suppl 2): S15–S28.

    Article  Google Scholar 

  48. Jakob H, Beckmann H . Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986; 65: 303–326.

    Article  CAS  PubMed  Google Scholar 

  49. Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR . Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 1991; 48: 625–632.

    Article  CAS  PubMed  Google Scholar 

  50. Falkai P, Schneider-Axmann T, Honer WG . Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 2000; 47: 937–943.

    Article  CAS  PubMed  Google Scholar 

  51. Kovalenko S, Bergmann A, Schneider-Axmann T, Ovary I, Majtenyi K, Havas L et al. Regio entorhinalis in schizophrenia: more evidence for migrational disturbances and suggestions for a new biological hypothesis. Pharmacopsychiatry 2004; 36(Suppl 3): S158–S161.

    Google Scholar 

  52. Akbarian S, Viñuela A, Kim JJ, Potkin SG, Bunney Jr WE, Jones EG . Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 1993; 50: 178–187.

    Article  CAS  PubMed  Google Scholar 

  53. Akbarian S, Bunney Jr WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993; 50: 169–177.

    Article  CAS  PubMed  Google Scholar 

  54. Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney Jr WE, Jones EG . Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 1996; 53: 425–436.

    Article  CAS  PubMed  Google Scholar 

  55. Anderson SA, Volk DW, Lewis DA . Increased density of microtubule associated protein 2- immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res 1996; 19: 111–119.

    Article  CAS  PubMed  Google Scholar 

  56. Kirkpatrick B, Conley RC, Kakoyannis A, Reep RL, Roberts RC . Interstitial cells of the white matter in the inferior parietal cortex in schizophrenia: an unbiased cell-counting study. Synapse 1999; 34: 95–102.

    Article  CAS  PubMed  Google Scholar 

  57. Eastwood SL, Harrison PJ . Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 2003; 8: 821–831.

    Article  CAS  Google Scholar 

  58. Roberts GW . Schizophrenia: the cellular biology of a functional psychosis. Trends Neurosci 1990; 13: 207–211.

    Article  CAS  PubMed  Google Scholar 

  59. Harrison PJ . Schizophrenia: a disorder of neurodevelopment? Curr Opin Neurobiol 1997; 7: 285–289.

    Article  CAS  PubMed  Google Scholar 

  60. Heinsen H, Gossmann E, Rub U, Eisenmenger W, Bauer M, Ulmar G et al. Variability in the human entorhinal region may confound neuropsychiatric diagnosis. Acta Anat 1996; 157: 226–237.

    Article  CAS  PubMed  Google Scholar 

  61. Akil M, Lewis DA . Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 1997; 154: 1010–1012.

    Article  CAS  PubMed  Google Scholar 

  62. Krimer LS, Herman MM, Saunders RC, Boyd JC, Hyde TM, Carter JM et al. A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cerebral Cortex 1997; 7: 732–739.

    Article  CAS  PubMed  Google Scholar 

  63. Beasley CL, Cotter DR, Everall IP . Density and distribution of white matter neurons in schizophrenia, bipolar disorder and major depressive disorder: no evidence for abnormalities of neuronal migration. Mol Psychiatry 2002; 7: 564–570.

    Article  CAS  PubMed  Google Scholar 

  64. Benes FM, Sorensen I, Bird ED . Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991; 17: 597–608.

    Article  CAS  PubMed  Google Scholar 

  65. Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ et al. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical–hippocampal interactions. Am J Psychiatry 1995; 152: 738–748.

    Article  CAS  PubMed  Google Scholar 

  66. Zaidel DW, Esiri MM, Harrison PJ . Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 1997; 154: 812–818.

    Article  CAS  PubMed  Google Scholar 

  67. Rajkowska G, Selemon LD, Goldman-Rakic PS . Neuronal and glial somal size in the prefrontal cortex—a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224.

    Article  CAS  PubMed  Google Scholar 

  68. Pierri JN, Volk CLE, Auh S, Sampson A, Lewis DA . Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 2001; 58: 466–473.

    Article  CAS  PubMed  Google Scholar 

  69. Sweet RA, Pierri JN, Auh S, Sampson AR, Lewis DA . Reduced pyramidal cell somal volume in auditory association cortex of subjects with schizophrenia. Neuropsychopharmacology 2003; 28: 599–609.

    Article  PubMed  Google Scholar 

  70. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall I . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral Cortex 2002; 12: 386–394.

    Article  PubMed  Google Scholar 

  71. Highley JR, Walker MA, McDonald B, Crow TJ, Esiri MM . Size of hippocampal pyramidal neurons in schizophrenia. Br J Psychiatry 2003; 183: 414–417.

    Article  CAS  PubMed  Google Scholar 

  72. Esiri MM, Pearson RCA . Perspectives from other diseases and lesions. In: Harrison PJ, Roberts GW (eds). The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, UK, 2000 pp 257–276.

    Google Scholar 

  73. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer A et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 1998; 57: 65–73.

    Article  Google Scholar 

  75. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N et al. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders—preliminary findings. Arch Gen Psychiatry 2000; 57: 349–356.

    Article  CAS  PubMed  Google Scholar 

  76. Black JE, Kodish IM, Grossman AW, Klintsova A, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744.

    Article  PubMed  Google Scholar 

  77. Arnold SE, Lee VMY, Gur RE, Trojanowski JQ . Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 1991; 88: 10850–10854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Law AJ, Weickert CS, Hyde TM, Kleinman JE, Harrison PJ . Reduced spinophilin but not MAP2 expression in the hippocampal formation in schizophrenia and mood disorder: molecular evidence for a pathology of dendritic spines. Am J Psychiatry 2004 (in press).

  79. Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS . Up-regulation of the D1 dopamine receptor-interacting protein, calcyon, in patients with schizophrenia. Arch Gen Psychiatry 2003; 60: 311–319.

    Article  CAS  PubMed  Google Scholar 

  80. Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM et al. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex. Arch Gen Psychiatry 2004; 61: 544–555.

    Article  CAS  PubMed  Google Scholar 

  81. Harrison PJ, Eastwood SL . Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 2001; 11: 508–519.

    Article  CAS  PubMed  Google Scholar 

  82. Honer WG, Young CE . Presynaptic proteins and schizophrenia. In: Smythies J (ed). Disorders of Synaptic Plasticity and Schizophrenia. International Review of Neurobiology, Vol 59. Elsevier: Amsterdam, 2004 pp 175–201.

    Chapter  Google Scholar 

  83. Lewis DA . GABAergic local circuit neurons and prefrontal dysfunction in schizophrenia. Brain Res Rev 2000; 31: 270–276.

    Article  CAS  PubMed  Google Scholar 

  84. Reynolds GP, Beasley CL, Zhang ZJ . Understanding the neurotransmitter pathology of schizophrenia: selective deficits of subtypes of cortical GABAergic neurons. J Neural Transm 2002; 109: 881–889.

    Article  CAS  PubMed  Google Scholar 

  85. Pakkenberg B . Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical dissectors. Biol Psychiatry 1993; 34: 768–772.

    Article  CAS  PubMed  Google Scholar 

  86. Heckers S, Heinsen H, Geiger B, Beckmann H . Hippocampal neuron number in schizophrenia: a stereological study. Arch Gen Psychiatry 1991; 48: 1002–1008.

    Article  CAS  PubMed  Google Scholar 

  87. Walker MA, Highley JR, Esiri MM, McDonald B, Roberts HC, Evans SP et al. Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiatry 2002; 159: 821–828.

    Article  PubMed  Google Scholar 

  88. Pakkenberg B . Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990; 47: 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  89. Popken GJ, Bunney Jr WE, Potkin SG, Jones EG . Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 2000; 97: 9276–9280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Young KA, Manaye KF, Liang CL, Hicks PB, German DC . Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 2000; 47: 944–953.

    Article  CAS  PubMed  Google Scholar 

  91. Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL et al. Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 2002; 159: 59–65.

    Article  PubMed  Google Scholar 

  92. Danos P, Baumann B, Krämer A, Bernstein HG, Stauch R, Krell D et al. Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophr Res 2003; 60: 141–155.

    Article  PubMed  Google Scholar 

  93. Highley JR, Walker MA, Crow TJ, Esiri MM, Harrison PJ . Low medial and lateral right pulvinar volumes in schizophrenia: a postmortem study. Am J Psychiatry 2003; 160: 1177–1179.

    Article  PubMed  Google Scholar 

  94. Cullen TJ, Walker MA, Parkinson N, Craven R, Crow TJ, Esiri MM et al. A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 2003; 60: 157–166.

    Article  CAS  PubMed  Google Scholar 

  95. Dorph-Petersen KA, Pierri JN, Sun Z, Sampson AR, Lewis DA . Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 2004; 472: 449–462.

    Article  PubMed  Google Scholar 

  96. Uranova NA, Orlovskaya DD, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  PubMed  Google Scholar 

  97. Hof PR, Haroutunian V, Friedrich Jr VL, Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  98. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004; 67: 269–275.

    Article  PubMed  Google Scholar 

  99. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Nat Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  PubMed  Google Scholar 

  101. Reddy LV, Koiral S, Sugiura Y, Herrera AA, Ko CP . Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 2003; 40: 563–580.

    Article  CAS  PubMed  Google Scholar 

  102. Wilkins A, Majed H, Layfield R, Compston A, Chandran S . Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci 2003; 23: 4967–4974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kung L, Roberts RC . Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 1999; 31: 67–75.

    Article  CAS  PubMed  Google Scholar 

  104. Whatley SA, Curtis D, Marchbankds RM . Mitochondrial involvement in schizophrenia and other functional psychoses. Neurochem Res 1996; 21: 995–1004.

    Article  CAS  PubMed  Google Scholar 

  105. Ben-Shachar D . Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 2002; 83: 1241–1251.

    Article  CAS  PubMed  Google Scholar 

  106. Karry R, Klein E, Ben-Shachar D . Mitochondrial complex I subunit expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 2004; 55: 676–684.

    Article  CAS  PubMed  Google Scholar 

  107. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT-J, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697.

    Article  CAS  PubMed  Google Scholar 

  108. Bertolino A, Weinberger DR . Proton magnetic resonance spectroscopy in schizophrenia. Eur J Radiol 1999; 30: 132–141.

    Article  CAS  PubMed  Google Scholar 

  109. Nudmamud S, Reynolds LM, Reynolds GP . N-acetylaspartate and N-acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study. Biol Psychiatry 2003; 53: 1138–1141.

    Article  CAS  PubMed  Google Scholar 

  110. Selemon LD, Goldman-Rakic PS . The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    Article  CAS  PubMed  Google Scholar 

  111. Bertolino A, Callicott JH, Elman I, Mattay VS, Tedeschi G, Frank JA et al. Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 1998; 43: 641–648.

    Article  CAS  PubMed  Google Scholar 

  112. Fannon D, Simmons A, Tennakoon L, O'Céallaigh S, Sumich A, Doku V et al. Selective deficit of hippocampal N-acetylaspartate in antipsychotic-naive patients with schizophrenia. Biol Psychiatry 2003; 54: 587–598.

    Article  CAS  PubMed  Google Scholar 

  113. Harrison PJ . The neuropathological effects of antipsychotic drugs. Schizophr Res 1999; 40: 87–99.

    Article  CAS  PubMed  Google Scholar 

  114. Konradi C, Heckers S . Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 2001; 50: 729–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Barton AJL, Pearson RCA, Najlerahim A, Harrison PJ . Pre and postmortem influences on brain RNA. J Neurochem 1993; 61: 1–11.

    Article  CAS  PubMed  Google Scholar 

  116. Mousavi M, Hellström-Lindahl E, Guan ZZ, Shan KR, Ravid R, Nordberg A . Protein and mRNA levels of nicotinic receptors in brain of tobacco using controls and patients with Alzheimer's disease. Neuroscience 2003; 122: 515–520.

    Article  CAS  PubMed  Google Scholar 

  117. Brody AL, Madelkern MA, Jarvik ME, Lee GS, Smitgh EC, Huang JC et al. Difference between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry 2004; 55: 77–84.

    Article  PubMed  Google Scholar 

  118. Albertson DN, Pruetz B, Schmidt CJ, Kuhn DM, Kapatos G, Bannon MJ . Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem 2004; 88: 1211–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harrison PJ, Heath PR, Eastwood SL, Burnet PWJ, McDonald B, Pearson RCA . The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 1995; 200: 151–154.

    Article  CAS  PubMed  Google Scholar 

  120. Lewis DA . The human brain revisited: opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology 2002; 26: 143–154.

    Article  PubMed  Google Scholar 

  121. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV et al. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 2004; 13: 609–616.

    Article  CAS  PubMed  Google Scholar 

  122. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  123. Hyde TM, Ziegler JC, Weinberger DR . Psychiatric disturbances in metachromatic leukodystrophy: insights into the neurobiology of psychosis. Arch Neurol 1992; 49: 401–406.

    Article  CAS  PubMed  Google Scholar 

  124. Weinberger DR, Berman KF, Suddath R, Torrey EF . Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992; 149: 890–897.

    Article  CAS  PubMed  Google Scholar 

  125. Friston K, Frith C . Schizophrenia: a disconnection syndrome? Clin Neurosci 1995; 3: 89–97.

    CAS  PubMed  Google Scholar 

  126. Andreasen NC . A unitary model of schizophrenia—Bleuler's ‘fragmented phrene’ as schizencephaly. Arch Gen Psychiatry 1999; 56: 781–787.

    Article  CAS  PubMed  Google Scholar 

  127. Fallon JH, Opole IO, Potkin SG . The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clin Neurosci Res 2003; 3: 77–107.

    Article  CAS  Google Scholar 

  128. McGlashan TH, Hoffman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    Article  CAS  PubMed  Google Scholar 

  129. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  PubMed  Google Scholar 

  130. Moises HW, Zoetga T, Gottesman II . The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2002; 2: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Frankle WG, Lerma J, Laruelle M . The synaptic hypothesis of schizophrenia. Neuron 2003; 39: 205–216.

    Article  CAS  PubMed  Google Scholar 

  132. Bagary MS, Symms MR, Barker GJ, Mutsatsa SH, Joyce EM, Ron MA . Gray and white matter brain abnormalities in first-episode schizophrenia inferred from magnetization transfer imaging. Arch Gen Psychiatry 2003; 60: 779–788.

    Article  PubMed  Google Scholar 

  133. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia—evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  PubMed  Google Scholar 

  134. Honer WG . Pathology of presynaptic proteins in Alzheimer's disease: more than simple loss of terminals. Neurobiol Aging 2003; 24: 1047–1062.

    Article  CAS  PubMed  Google Scholar 

  135. Scheff SW, Price DA . Synaptic pathology in Alzheimer's disease: a review of ultrastructural studies. Neurobiol Aging 2003; 24: 1029–1046.

    Article  CAS  PubMed  Google Scholar 

  136. Marrone DF, Petit TL . The role of synaptic morphology in neural plasticity: structural interactions underlying synaptic power. Brain Res Rev 2002; 38: 291–308.

    Article  PubMed  Google Scholar 

  137. Benes FM . Emerging principles of altered neural circuitry in schizophrenia. Brain Res Rev 2000; 31: 251–269.

    Article  CAS  PubMed  Google Scholar 

  138. Harrison PJ, Eastwood SL . Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 1998; 352: 1669–1673.

    Article  CAS  PubMed  Google Scholar 

  139. Eastwood SL, Harrison PJ . Decreased expression of vesicular glutamate transporter 1 (VGLUT1) and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 2004 in press.

  140. Eastwood SL, Cotter D, Harrison PJ . Cerebellar synaptic protein expression in schizophrenia. Neuroscience 2001; 105: 219–229.

    Article  CAS  PubMed  Google Scholar 

  141. Lewis DA, Gonzalez-Burgos G . Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52: 309–317.

    Article  CAS  PubMed  Google Scholar 

  142. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  143. Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR et al. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 1999; 156: 1580–1589.

    Article  CAS  PubMed  Google Scholar 

  144. Albert KA, Hemmings Jr HC, Adamo AI, Potkin SG, Akbarian S, Sandman CA et al. Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 2002; 59: 705–712.

    Article  CAS  PubMed  Google Scholar 

  145. Carlsson M, Carlsson A . Interactions between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson's disease. Trends Neurosci 1990; 13: 272–276.

    Article  CAS  PubMed  Google Scholar 

  146. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  147. Olney JW, Farber NB . Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  148. Tamminga CA . Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 1998; 12: 21–36.

    Article  CAS  PubMed  Google Scholar 

  149. Tsai GC, Coyle JT . Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 2002; 42: 165–179.

    Article  CAS  PubMed  Google Scholar 

  150. Konradi C, Heckers S . Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97: 153–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Laruelle M, Kegeles LS, Abi-Dargham A . Glutamate, dopamine, and schizophrenia. From pathophysiology to treatment. Ann NY Acad Sci 2003; 1003: 138–158.

    Article  CAS  PubMed  Google Scholar 

  152. Kromkamp M, Uylings HBM, Smidt MP, Hellemons AJ, Burbach JPH, Kahn RS . Decreased thalamic expression of the homeobox gene DLX1 in psychosis. Arch Gen Psychiatry 2003; 60: 869–874.

    Article  CAS  PubMed  Google Scholar 

  153. Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder—a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  154. Eastwood SL, Law AJ, Everall IP, Harrison PJ . The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 2003; 8: 148–155.

    Article  CAS  PubMed  Google Scholar 

  155. Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  156. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait—evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  157. Gottesman II, Shields J . A polygenic theory of schizophrenia. Proc Natl Acad Sci USA 1967; 58: 199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Risch N . Linkage strategies for genetically complex traits. 2. The power of affected relative pairs. Am J Hum Genet 1990; 46: 229–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Owen MJ, Williams NM, O'Donovan MC . The molecular genetics of schizophrenia. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  160. Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 1995; 11: 287–293.

    Article  CAS  PubMed  Google Scholar 

  161. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  162. Brzustowicz LM, Hodgkinson KA, Chow EWC, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Williams NM, Norton N, Williams H, Ekholm B, Hamshere ML, Lindblom Y et al. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am J Hum Genet 2003; 73: 1355–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  165. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling paiers with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  167. Page GP, George V, Go RC, Page P, Allison DB . Are we there yet? Deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am J Hum Genet 2003; 3: 711–719.

    Article  Google Scholar 

  168. Swallow DM . Genetics of lactase persistence and lactose intolerance. Annu Rev Genet 2003; 37: 197–219.

    Article  CAS  PubMed  Google Scholar 

  169. Botstein D, Risch N . Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet 2003; 33(Suppl): 228–237.

    Article  CAS  PubMed  Google Scholar 

  170. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    Article  CAS  PubMed  Google Scholar 

  171. Weiss KM, Terwilliger JD . How many diseases does it take to map a gene with SNPs? Nat Genet 2000; 26: 151–157.

    Article  CAS  PubMed  Google Scholar 

  172. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  PubMed  Google Scholar 

  173. Glatt SJ, Faraone SV, Tsuang MT . Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol Psychiatry 2003; 8: 911–915.

    Article  CAS  PubMed  Google Scholar 

  174. Jonsson EG, Kaiser R, Brockmoller J, Nimgaonkar V, Crocq MA . Meta-analysis of the dopamine D3 receptor gene (DRD3) Ser9Gly variant and schizophrenia. Psychiatr Genet 2004; 14: 9–12.

    Article  PubMed  Google Scholar 

  175. Abdolmaleky HM, Faraone SV, Glatt SJ, Tsuang MT . Meta-analysis of association between the T102C polymorphism of the 5HT2a receptor gene and schizophrenia. Schizophr Res 2004; 67: 53–62.

    Article  PubMed  Google Scholar 

  176. Murphy KC . Schizophrenia and velo-cardio-facial syndrome. Lancet 2002; 359: 426–430.

    Article  PubMed  Google Scholar 

  177. Axelrod J, Tomchick R . Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 1958; 233: 697–701.

    CAS  PubMed  Google Scholar 

  178. Männistö PT, Kaakkola S . Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999; 51: 593–628.

    PubMed  Google Scholar 

  179. Weinshilboum RM, Otterness DM, Szumlanski CL . Methylation pharmacogenetics: catechol-O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 1999; 39: 19–52.

    Article  CAS  PubMed  Google Scholar 

  180. Tenhunen J, Salminen M, Lundström K, Kiviluotot, Savolainen R, Ulmanen I . Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem 1994; 223: 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  181. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melén K, Julkunen I et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995; 34: 4202–4210.

    Article  CAS  PubMed  Google Scholar 

  182. Hong J, Shu-Leong H, Tao X, Lap-Ping Y . Distribution of catechol-O-methyltransferase expression in human central nervous system. NeuroReport 1998; 9: 2861–2864.

    Article  CAS  PubMed  Google Scholar 

  183. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM et al. Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 2003; 116: 127–137.

    Article  CAS  PubMed  Google Scholar 

  184. Kastner A, Anglade P, Bounaix C, Damier P, Javoy-Agid F, Bromet N et al. Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neuroscience 1994; 62: 449–457.

    Article  CAS  PubMed  Google Scholar 

  185. Karoum F, Chrapusta S, Egan MF . 3-Methoxytryptamine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 1994; 63: 972–979.

    Article  CAS  PubMed  Google Scholar 

  186. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff DW et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 1998; 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ . Catechol-O-methyltransferase inhibition improves set shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 2004; 24: 5331–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ulmanen I, Peranen J, Tehnunen J, Tilgmann C, Karhunen T, Panula P et al. Expression and intracellular localization of catechol-O-methyltransferase in transfected mammalian cells. Eur J Biochem 1997; 243: 452–459.

    Article  CAS  PubMed  Google Scholar 

  189. Weinshilboum R, Raymond FA . Inheritance of low erythrocyte catechol-O-methyltransferase activity in man. Am J Med Genet 1978; 29: 125–135.

    Google Scholar 

  190. Grossman MH, Littrel JB, Weinstein R, Szumlanski C, Weinshilboum R . Identification of the possible basis for inherited differences in human catechol-O-methyltransferase. Trans Neurosci Soc 1992; 18: 70.

    Google Scholar 

  191. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski C, Weinshilboum R . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    Article  CAS  PubMed  Google Scholar 

  192. Chen J, Ma QD, Matsumoto M, Lipska BK, Halim ND, Shen L et al. Functional consequences of evolutional mutations in the catechol-O-methyltransferase, a schizophrenia susceptibility gene. Program No 79211. 2003 Abstract Viewer/Itinerary. Planner. Society for Neuroscience: Washington, DC.

  193. Shield AJ, Thomae BA, Eckloff BW, Wieben ED, Weinshilboum RM . Human catechol O-methyltransferase genetic variation: gene resequencing and functional characterization of variant allozymes. Mol Psychiatry 2004; 9: 151–160.

    Article  CAS  PubMed  Google Scholar 

  194. Glatt SJ, Faraone SV, Tsuang MT . Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case–control and family-based studies. Am J Psychiatry 2003; 160: 469–476.

    Article  PubMed  Google Scholar 

  195. Palmatier MA, Kang AM, Kidd KK . Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol Psychiatry 1999; 46: 557–567.

    Article  CAS  PubMed  Google Scholar 

  196. DeMille MMC, Kidd JR, Ruggeri V, Palmatier MA, Goldman D, Odunsi A et al. Population variation in linkage disequilibrium across the COMT gene considering promoter region and coding region variation. Hum Genet 2002; 111: 521–537.

    Article  CAS  PubMed  Google Scholar 

  197. Li T, Sham PC, Vallada H, Xie T, Tang X, Murray RM et al. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 1996; 6: 131–133.

    Article  CAS  PubMed  Google Scholar 

  198. Kunugi H, Vallada H, Sham PC, Hoda F, Arranz MJ, Li T et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr Genet 1997; 7: 97–101.

    Article  CAS  PubMed  Google Scholar 

  199. Li T, Ball D, Zhao J, Murray RM, Liu X, Sham PC et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol Psychiatry 2000; 5: 77–84.

    Article  CAS  PubMed  Google Scholar 

  200. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chen X, Wang X, O'Neill AF, Walsh D, Kendler KS . Variants in the catechol-o-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol Psychiatry 2004 in press.

  202. Avramopoulos D, Stefanis NC, Hantoumi I, Smyrnis N, Evdokimidis I, Stefanis CN . Higher scores of self-reported schizotypy in healthy young males carrying the COMT high activity allele. Mol Psychiatry 2002; 7: 706–711.

    Article  CAS  PubMed  Google Scholar 

  203. Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni XQ et al. Neurocognitive correlates of the COMT Val 158Met polymorphism in chronic schizophrenia. Biol Psychiatry 2002; 52: 701–707.

    Article  CAS  PubMed  Google Scholar 

  204. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory—relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.

    Article  CAS  PubMed  Google Scholar 

  205. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D . A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652–654.

    Article  PubMed  Google Scholar 

  206. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003; 100: 6186–6191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF et al. Association of the G1947A COMT (Val108/158Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 2003; 54: 40–48.

    Article  CAS  PubMed  Google Scholar 

  208. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–844.

    Article  CAS  PubMed  Google Scholar 

  209. Huotari M, Gogos JA, Karayiorgou M, Koponen I, Forsberg M, Raasmaja A et al. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur J Neurosci 2002; 15: 246–256.

    Article  PubMed  Google Scholar 

  210. Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI . Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 1998; 18: 2697–2708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A . Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 2001; 432: 119–136.

    Article  CAS  PubMed  Google Scholar 

  212. Mazei MS, Pluto CP, Kirkbride B, Pehek EA . Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 2002; 936: 58–67.

    Article  CAS  PubMed  Google Scholar 

  213. Morón JA, Brockington A, Wise RA, Rocha BA, Hope BT . Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 2002; 22: 389–395.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE . Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 2003; 23: 2008–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Grace AA . Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm 1993; 91: 111–134.

    Article  CAS  Google Scholar 

  216. Yang CR, Seamans JK, Gorelova N . Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 1999; 21: 161–194.

    Article  CAS  PubMed  Google Scholar 

  217. Moghaddam B . Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 2002; 51: 775–787.

    Article  CAS  PubMed  Google Scholar 

  218. Winterer G, Weinberger DR . Molecular mechanisms of disturbed cortical connectivity and signal-to-noise ratio in schizophrenia. Trends Neurosci 2004 in press.

  219. Shifman S, Bronstein M, Sternfeld M, Pisanté-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003; 73: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Matsumoto M, Weickert CS, Beltaifa S, Kolachana B, Chen JS, Hyde TM et al. Catechol O-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia. Neuropsychopharmacology 2003; 28: 1521–1530.

    Article  CAS  PubMed  Google Scholar 

  222. Tunbridge E, Burnet PWJ, Sodhi MS, Harrison PJ . Catechol-o-methyltransferase (COMT) and proline dehydrogenase (PRODH) mRNAs in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Synapse 2004; 51: 112–118.

    Article  CAS  PubMed  Google Scholar 

  223. Xie T, Ho SL, Ramsden DB . Characterization and implications of estrogenic down-regulation of human catechol-O-methyltransferase gene transcription. Mol Pharmacol 1999; 56: 31–38.

    Article  CAS  PubMed  Google Scholar 

  224. Cross AJ, Crow TJ, Killpack WS, Longden A, Owen F, Riley GJ . The activities of brain dopamine-β-hydroxylase and catechol-O-methyl transferase in schizophrenics and controls. Psychopharmacology 1978; 59: 117–121.

    Article  CAS  PubMed  Google Scholar 

  225. Straub RE, Jiang YX, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Van den Oord EJC, Sullivan PF, Jiang Y, Walsh D, O'Neill FA, Kendler KS et al. Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol Psychiatry 2003; 8: 499–510.

    Article  CAS  PubMed  Google Scholar 

  227. Morris DW, McGhee KA, Schwaiger S, Scully P, Quinn J, Meagher D et al. No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophr Res 2003; 60: 167–172.

    Article  PubMed  Google Scholar 

  228. Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M et al. Identification in two independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 2004; 61: 336–344.

    Article  CAS  PubMed  Google Scholar 

  229. Tang JX, Zhou J, Fan JB, Li XW, Shi YY, Gu NF et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 2003; 8: 717–718.

    Article  CAS  PubMed  Google Scholar 

  230. Van Den Bogaert A, Schumacher J, Schulze TG, Otte AC, Ohlraun S, Kovalenko S et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet 2003; 73: 1438–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kirov G, Ivanov D, Williams NM, Preece A, Nikolov I, Milev R et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatry 2004; 55: 971–973.

    Article  CAS  PubMed  Google Scholar 

  232. Straub RE, Egan MF, Hashimoto R, Matsumoto M, Weickert CS, Goldberg T et al. The schizophrenia susceptibility gene dysbindin (DTNBP1, 6p22.3): analysis of haplotypes, intermediate phenotypes, and alternative transcripts. Biol Psychiatry 2003; 53: 167S.

    Google Scholar 

  233. Liao H-M, Chen C-H . Mutation analysis of the human dystrobrevin-binding protein 1 gene in schizophrenic patients. Schizophr Res 2004 in press.

  234. Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ . Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 2001; 276: 24232–24241.

    Article  CAS  PubMed  Google Scholar 

  235. Mehler MF . Brain dystrophin, neurogenetics and mental retardation. Brain Res Rev 2000; 32: 277–307.

    Article  CAS  PubMed  Google Scholar 

  236. Blake DJ, Nawrotzki R, Loh NY, Gorecki DC, Davies KE . Beta-dystrobrevin, a member of the dystrophin-related protein family. Proc Natl Acad Sci USA 1998; 95: 241–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG . Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000; 3: 661–669.

    Article  CAS  PubMed  Google Scholar 

  238. Inoue A, Okabe S . The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function. Curr Opin Neurobiol 2003; 13: 332–340.

    Article  CAS  PubMed  Google Scholar 

  239. Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 2004; 113: 1353–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. McClintock BW, Shannon Weickert C, Halim ND, Lipska BK, Hyde TM, Herman MM et al. Reduced expression of dysbindin protein in the dorsolateral prefrontal cortex of patients with schizophrenia. Program No. 317.9. 2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience: Washington, DC.

  241. Bray NJ, Buckland PR, Owen MJ, O'Donovan MC . cis-Acting variation in the expression of a high proportion of genes in human brain. Hum Genet 2003; 113: 149–153.

    PubMed  Google Scholar 

  242. Harrison PJ . The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology 2004; 174: 151–162.

    Article  CAS  PubMed  Google Scholar 

  243. Numakawa T, Yagasaki Y, Ishimoto T, Suzuki T, Iwata N, Ozaki N et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004; in: press.

    Google Scholar 

  244. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Gerlai R, Pisacane P, Erickson S . Heregulin but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioural tasks. Behav Brain Res 2000; 109: 219–227.

    Article  CAS  PubMed  Google Scholar 

  246. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  247. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–487.

    Article  CAS  PubMed  Google Scholar 

  248. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang X et al. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 2003; 8: 706–709.

    Article  CAS  PubMed  Google Scholar 

  249. Tang JX, Chen WY, He G, Zhou J, Gu NF et al. Polymorphisms within 5′ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol Psychiatry 2004; 9: 11–12.

    Article  CAS  PubMed  Google Scholar 

  250. Corvin AP, Morris DW, McGhee K, Schwaiger S, Scully P, Quinn J et al. Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry 2004; 9: 208–212.

    Article  CAS  PubMed  Google Scholar 

  251. Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM et al. Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry 2004; 9: 698–704.

    Article  CAS  PubMed  Google Scholar 

  252. Zhao X, Shi Y, Tang J, Tang R, Yu L, Gu N et al. A case control and family based association study of the neuregulin 1 gene and schizophrenia. J Med Genet 2004; 41: 31–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Iwata N, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T et al. No association with neuregulin 1 haplotype to Japanese schizophrenia. Mol Psychiatry 2004; 9: 126–127.

    Article  CAS  PubMed  Google Scholar 

  254. Thiselton DL, Webb BT, Neale BM, Ribble RC, O'Neill FA, Walsh D et al. No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol Psychiatry 2004 in press.

  255. Law AJ, Weickert CS, Hyde TM, Kleinman JE, Harrison PJ . Neuregulin-1 (NRG1) messenger RNA and protein in the human brain: hippocampal formation, prefrontal cortex, cerebellum and brainstem. Neuroscience 2004; 127: 125–136.

    Article  CAS  PubMed  Google Scholar 

  256. Kerber G, Streif R, Schwaiger FW, Kreutzberg GW, Hager G . Neuregulin-1 isoforms are differentially expressed in the intact and regenerating adult rat nervous system. J Mol Neurosci 2003; 21: 149–165.

    Article  CAS  PubMed  Google Scholar 

  257. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004; 9: 299–307.

    Article  CAS  PubMed  Google Scholar 

  258. Falls DL . Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 2003; 284: 14–30.

    Article  CAS  PubMed  Google Scholar 

  259. Stefansson H, Steinthorsdottir V, Thorgeirsson T, Gulcher JR, Stefansson K . Neuregulin 1 and schizophrenia. Ann Med 2004; 36: 62–71.

    Article  CAS  PubMed  Google Scholar 

  260. Buonanno A, Fischbach GD . Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 2001; 11: 287–296.

    Article  CAS  PubMed  Google Scholar 

  261. Murphy S, Krainock R, Tham M . Neuregulin signaling via ErbB receptor assemblies in the nervous system. Mol Neurobiol 2002; 25: 67–77.

    Article  CAS  PubMed  Google Scholar 

  262. Bao J, Wolpowitz D, Role LW, Talmage DA . Back signaling by the Nrg-1 intracellular domain. J Cell Biol 2003; 161: 1133–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Ozaki M . Neuregulins and the shaping of synapses. The Neuroscientist 2001; 7: 146–154.

    Article  CAS  PubMed  Google Scholar 

  264. Crone SA, Lee K-F . Gene targeting reveals multiple essential functions of the neuregulin signaling system during development of the neuroendocrine and nervous systems. Ann NY Acad Sci 2002; 971: 547–553.

    Article  CAS  PubMed  Google Scholar 

  265. Roysommuti S, Carroll SL, Wyss JM . Neuregulin-1b modulates in vivo entorhinal–hippocampal synaptic transmission in adult rats. Neuroscience 2003; 121: 779–785.

    Article  CAS  PubMed  Google Scholar 

  266. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 2004; 304: 700–703.

    Article  CAS  PubMed  Google Scholar 

  267. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P . Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6: 293–301.

    Article  CAS  PubMed  Google Scholar 

  268. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  269. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry 2004; 55: 192–195.

    Article  CAS  PubMed  Google Scholar 

  270. Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J et al. Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet Neuropsychiatr Genet 2004; 125B: 50–53.

    Article  Google Scholar 

  271. Muma NA, Mariyappa R, Williams K, Lee JM . Differences in regional and subcellular localization of G (q/11) and RGS4 protein levels in Alzheimer's disease: correlation with muscarinic M1 receptor binding parameters. Synapse 2003; 47: 58–65.

    Article  CAS  PubMed  Google Scholar 

  272. Larminie C, Murdock P, Walhin J-P, Duckworth M, Blumer KJ, Scheideler MA et al. Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Mol Brain Res 2004; 122: 24–34.

    Article  CAS  PubMed  Google Scholar 

  273. Erdely HA, Lahti RA, Lopez MB, Myers CS, Roberts RC, Tamminga CA et al. Regional expression of RGS4 mRNA in human brain. Eur J Neurosci 2004; 19: 3125–3128.

    Article  PubMed  Google Scholar 

  274. De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG . The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 2000; 40: 235–271.

    Article  CAS  PubMed  Google Scholar 

  275. Ross EM, Wilkie TM . GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2000; 69: 795–827.

    Article  CAS  PubMed  Google Scholar 

  276. Grillet N, Dubrueil V, Dufour HD, Brunet J-F . Dynamic expression of RGS4 in the developing nervous system and regulation by the neural type-specific transcription factor Phox2b. J Neurosci 2003; 23: 10613–10621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Geurts M, Hermans E, Maloteaux JM . Opposite modulation of regulators of G protein signalling-2 (RGS2) and RGS4 expression by dopamine receptors in the rat striatum. Neurosci Lett 2002; 333: 146–150.

    Article  CAS  PubMed  Google Scholar 

  278. St Clair D, Blackwood D, Muir W, Baillie D, Hubbard A, Wright A et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  279. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  280. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R et al. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001; 10: 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  281. Hwu HG, Liu CM, Fann CS, Ou-Yang WC, Lee SF . Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol Psychiatry 2003; 8: 445–452.

    Article  CAS  PubMed  Google Scholar 

  282. Ekelund J, Hennah W, Hiekkalinna T, Parker A, Meyer J, Lonnqvist J et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry 2004 in press.

  283. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Gasperoni TL, Ekelund J, Huttunen M, Palme CG, Tuulio-Henriksson A, Lonnqvist J et al. Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. Am J Med Genet 2003; 116B: 8–16.

    Article  PubMed  Google Scholar 

  285. Devon RS, Anderson S, Tague PW, Burgess P, Kipari TM, Semple CA et al. Identification of polymorphisms within Disrupted in Schizophrenia 1 and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar disorder. Psychiatr Genet 2001; 11: 71–78.

    Article  CAS  PubMed  Google Scholar 

  286. Hennah W, Varilo T, Kestilä M, Paunio T, Arajärvi R, Hauska J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  287. Millar JK, Christie S, Semple CA, Porteous DJ . Chromosomal location and genomic structure of the human translin-associated factor X gene (TRAX; TSNAX) revealed by intergenic splicing to DISC1, a gene disrupted by a translocation segregating with schizophrenia. Genomics 2000; 67: 69–77.

    Article  CAS  PubMed  Google Scholar 

  288. Callicott JH, Pezeawas L, Egan MF, Hariri AR, Mattay VS, Goldberg TE et al. Genetic variationVariation in DISC-1 affects hippocampal structure and function associated with increased risk for schizophrenia and with normal hippocampal structure and function. (in review).

  289. Millar JK, Christie S, Porteous DJ . Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem Biophys Res Commun 2003; 311: 1019–1025.

    Article  CAS  PubMed  Google Scholar 

  290. Miyoshi K, Hondo A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  291. Morris JA, Kandpal G, Ma L, Austin CP . DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003; 12: 1591–1608.

    Article  CAS  PubMed  Google Scholar 

  292. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  293. Brandon NJ, Handford EJ, Scurov I, Rain J-C, Pelling M, Duran-Jimeniz B et al. Disrupted in schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25: 42–55.

    Article  CAS  PubMed  Google Scholar 

  294. Austin CP, Ma L, Ky B, Morris JA, Shughrue PJ . DISC1 (Disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. NeuroReport 2003; 14: 951–954.

    Article  CAS  PubMed  Google Scholar 

  295. Austin CP, Ky B, Ma L, Morris JA, Shughrue PJ . Expression of disrupted-in-schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 2004; 124: 3–10.

    Article  CAS  PubMed  Google Scholar 

  296. Schiffer HH . Glutamate receptor genes: susceptibility factors in schizophrenia and depressive disorders? Mol Neurobiol 2002; 25: 191–212.

    Article  PubMed  Google Scholar 

  297. Collier DA, Li T . The genetics of schizophrenia: glutamate not dopamine? Eur J Pharmacol 2003; 480: 177–184.

    Article  CAS  PubMed  Google Scholar 

  298. Mart SB, Cichon S, Propping P, Nöthen M . Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am J Med Genet 2002; 114: 46–50.

    Article  Google Scholar 

  299. Fujii Y, Shibata H, Kikuta R, Makino C, Tani A, Hirata N et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet 2003; 13: 71–76.

    PubMed  Google Scholar 

  300. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA, in press.

  301. Cartmell J, Schoepp DD . Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 2000; 75: 889–907.

    Article  CAS  PubMed  Google Scholar 

  302. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW . The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002; 22: 9134–9141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. De Blasi A, Conn PJ, Pin JP, Nicoletti F . Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 2001; 22: 114–120.

    Article  CAS  PubMed  Google Scholar 

  304. Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R . Insight into the function of Group I and Group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 2003; 14: 257–277.

    Article  CAS  PubMed  Google Scholar 

  305. Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281: 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  306. Neale JH, Bzdega T, Wroblewska B . N-acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 2000; 75: 443–452.

    Article  CAS  PubMed  Google Scholar 

  307. Greene R . Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 2001; 11: 569–577.

    Article  CAS  PubMed  Google Scholar 

  308. Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffmann R . NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 2003; 169: 215–233.

    Article  CAS  PubMed  Google Scholar 

  309. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N . Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol 1993; 335: 252–266.

    Article  CAS  PubMed  Google Scholar 

  310. Makoff A, Volpe F, Lelchuk R, Harrington K, Emson P . Molecular characterization and localization of human metabotropic glutamate receptor type 3. Mol Brain Res 1996; 40: 55–63.

    Article  CAS  PubMed  Google Scholar 

  311. Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ . The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 1996; 71: 949–976.

    Article  CAS  PubMed  Google Scholar 

  312. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC . Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res 1998; 56: 207–217.

    Article  CAS  PubMed  Google Scholar 

  313. Tamaru Y, Nomura S, Mizuno M, Shigemoto R . Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 2001; 106: 481–503.

    Article  CAS  PubMed  Google Scholar 

  314. Crook JM, Akil M, Law BCW, Hyde TM, Kleinman JE . Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann's area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Mol Psychiatry 2002; 7: 157–164.

    Article  CAS  PubMed  Google Scholar 

  315. Luyt K, Varadi A, Molnar E . Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells. J Neurochem 2003; 84: 1452–1464.

    Article  CAS  PubMed  Google Scholar 

  316. Richardson-Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador-Woodruff JH . Glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry 2000; 47: 22–28.

    Article  CAS  PubMed  Google Scholar 

  317. Chumakov I, Blumenfeld M, Guerrassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Mothet JP, Parent AT, Wolosker H, Brady Jr RO, Linden DJ, Ferris CD et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97: 4926–4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Schumacher J, Abon Jamra R, Freudenberg J, Becker T, Ohlraun S, Otte ACJ et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9: 203–207.

    Article  CAS  PubMed  Google Scholar 

  320. Zou F, Li C, Duan S, Zheng Y, Gu N, Feng G et al. A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. Schizophr Res 2004 in press.

  321. Addington AM, Gornick M, Sporn A, Gogtay N, Greenstein D, Lenane M et al. Polymorphisms in the 13q32 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004; 55: 976–980.

    Article  CAS  PubMed  Google Scholar 

  322. Goldberg TE, Straub RE, Callicott JH, Hariri A, Mattay VS, Bigelow L et al. The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Biol Psychiatry 2004 in press.

  323. Moreno S, Nardacci R, Cimini A, Ceru MP . Immunocytochemical localization of D-amino acid oxidase in rat brain. J Neurocytol 1999; 28: 169–185.

    Article  CAS  PubMed  Google Scholar 

  324. Toro CT, Kasher PR, Deakin JFW . Altered D-serine metabolism in schizophrenia? A post-mortem study using Stanley Consortium brains [Abstract]. Schizophr Res 2004; 67(Suppl): 125.

    Google Scholar 

  325. Cousin MA, Robinson PJ . The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 2001; 24: 659–665.

    Article  CAS  PubMed  Google Scholar 

  326. Winder DG, Sweatt JD . Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat Rev Neurosci 2001; 2: 461–474.

    Article  CAS  PubMed  Google Scholar 

  327. Groth RD, Dunbar RL, Mermelstein PG . Calcineurin regulation of neuronal plasticity. Biochem Biophys Res Commun 2003; 311: 1159–1171.

    Article  CAS  PubMed  Google Scholar 

  328. Greengard P . The neurobiology of slow synaptic transmission. Science 2001; 294: 1024–1030.

    Article  CAS  PubMed  Google Scholar 

  329. Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P . DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 2004; 44: 269–296.

    Article  CAS  PubMed  Google Scholar 

  330. Sik A, Hajos N, Gulacsi A, Mody I, Freund TF . The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc Natl Acad Sci USA 1998; 95: 3245–3250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 2003; 100: 8982–8987.

    Article  CAS  Google Scholar 

  332. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 2003; 100: 8993–8998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Freedman R, Adams CE, Leonard S . The α7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 2000; 20: 299–306.

    Article  CAS  PubMed  Google Scholar 

  334. Leonard S, Adler LE, Benhammou K, Berger R, Breese CR, Drebing C et al. Smoking and mental illness. Pharmacol Biochem Behav 2001; 70: 561–570.

    Article  CAS  PubMed  Google Scholar 

  335. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M et al. Association of promoter variants in the α7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 2002; 59: 1085–1096.

    Article  CAS  PubMed  Google Scholar 

  337. George TP, Verrico CD, Picciotto MR, Roth RH . Nicotinic modulation of mesoprefrontal dopamine neurons: pharmacologic and neuroanatomic characterization. J Pharmacol Exp Therap 2000; 295: 58–66.

    CAS  Google Scholar 

  338. Paterson D, Nordberg A . Nicotinic receptors in the human brain. Prog Neurobiol 2000; 61: 75–111.

    Article  CAS  PubMed  Google Scholar 

  339. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG et al. Ultrastructual distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 2001; 21: 7993–8003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Frazier CJ, Strowbridge BW, Papke RL . Nicotinic receptors on local circuit neurons in dentate gyrus: a potential role in regulation of granule cell excitability. J Neurophysiol 2003; 89: 3018–3028.

    Article  CAS  PubMed  Google Scholar 

  341. Yang X, Kuo Y, Devay P, Yu C, Role L . A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron 1998; 20: 255–270.

    Article  CAS  PubMed  Google Scholar 

  342. Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M et al. Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and -alpha-bungarotoxin binding in human postmortem brain. J Comp Neurol 1997; 387: 385–398.

    Article  CAS  PubMed  Google Scholar 

  343. Kawai H, Zago W, Berg DK . Nicotinic alpha 7 receptors cluster on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci 2002; 22: 7903–7912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Freedman R, Hall M, Adler LE, Leonard S . Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 1995; 38: 22–33.

    Article  CAS  PubMed  Google Scholar 

  345. Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: a-bungarotoxin and nicotine binding in the thalamus. J Neurochem 1999; 73: 1590–1597.

    Article  CAS  PubMed  Google Scholar 

  346. Guan ZZ, Zhang X, Blennow K, Nordberg A . Decreased protein level of nicotinic receptor α7 subunit in the frontal cortex from schizophrenic brain. NeuroReport 1999; 10: 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  347. Marutle A, Zhang X, Court J, Piggott M, Johnson M, Perry R et al. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanatomy 2001; 22: 115–126.

    Article  CAS  Google Scholar 

  348. Gault J, Hopkins J, Berger R, Drebing C, Logel J, Walton C et al. Comparison of polymorphisms in the alpha7 nicotinic receptor gene and its partial duplication in schizophrenic and control subjects. Am J Med Genet 2003; 123B: 39–49.

    Article  PubMed  Google Scholar 

  349. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen Y-J et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 16859–16864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Jacquet H, Raux G, Thibaut F, Hecketsweiler B, Huoy E, Demilly C et al. PRODH mutations and hyperprolinaemia in a subset of schizophrenic patients. Hum Mol Genet 2002; 11: 2243–2249.

    Article  CAS  PubMed  Google Scholar 

  352. Gogos JA, Santha M, Takacs Z, Beck KD, Luine VN, Lucas LR et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 1999; 21: 434–439.

    Article  CAS  PubMed  Google Scholar 

  353. Johnson JL, Roberts E . Proline, glutamate and glutamine metabolism in mouse brain synaptosomes. Brain Res 1984; 323: 247–256.

    Article  CAS  PubMed  Google Scholar 

  354. Cohen SM, Nadler J . Proline-induced inhibition of glutamate release in hippocampal area CA1. Brain Res 1997; 769: 333–339.

    Article  CAS  PubMed  Google Scholar 

  355. Fan JB, Ma J, Zhang CS, Tang JX, Gu NF, Feng GY et al. A family-based association study of T1945C polymorphism in the proline dehydrogenase gene and schizophrenia in the Chinese population. Neurosci Lett 2003; 338: 252–254.

    Article  CAS  PubMed  Google Scholar 

  356. Ohtsuki T, Tanaka S, Ishiguro H, Noguchi E, Arnami T, Tanabe E et al. Failure to find association between PRODH deletion and schizophrenia. Schizophr Res 2004; 67: 111–113.

    Article  PubMed  Google Scholar 

  357. Williams HJ, Williams N, Spurlock G, Norton N, Ivanov D, McCreadie RM et al. Association between PRODH and schizophrenia is not confirmed. Mol Psychiatry 2003; 8: 644–645.

    Article  CAS  PubMed  Google Scholar 

  358. Williams HJ, Williams N, Spurlock G, Norton N, Zammit S, Kirov G et al. Detailed analysis of PRODH and PsPRODH reveals no association with schizophrenia. Am J Med Genet 2003; 120B: 42–46.

    Article  CAS  PubMed  Google Scholar 

  359. Emamian ES, Hall D, Birnbaum MR, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3 signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  PubMed  Google Scholar 

  360. Kozlovsky N, Belmaker RH, Agam G . GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur Neuropsychopharmacol 2002; 12: 13–25.

    Article  CAS  PubMed  Google Scholar 

  361. Brazil DP, Park J, Hemmings BA . PKB binding proteins. Getting in on the Akt. Cell 2002; 111: 298–303.

    Article  Google Scholar 

  362. Laws SM, Hone E, Taddei K, Harper C, Dean B, McClean C et al. Variation at the APOE –491 promoter locus is associated with altered brain levels of apolipoprotein E. Mol Psychiatry 2002; 7: 886–890.

    Article  CAS  PubMed  Google Scholar 

  363. Greenwood TA, Kelsoe JR . Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 2003; 82: 511–520.

    Article  CAS  PubMed  Google Scholar 

  364. Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003; 23: 8788–8799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Theuns J, Remacle J, Killick R, Corsmit E, Vennekens K, Huylebroeck D et al. Alzheimer-associated C allele of the promoter polymorphism –22C>T causes a critical neuron-specific decrease of presenilin 1 expression. Hum Mol Genet 2003; 12: 869–877.

    Article  CAS  PubMed  Google Scholar 

  366. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 2003; 35: 341–348.

    Article  CAS  PubMed  Google Scholar 

  367. Lee CJ, Irizarry K . Alternative splicing in the nervous system: an emerging source of diversity and regulation. Biol Psychiatry 2003; 54: 771–776.

    Article  CAS  PubMed  Google Scholar 

  368. Mill J, Asherson P, Browes C, D'Souza U, Craig I . Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 2002; 114: 975–979.

    Article  PubMed  Google Scholar 

  369. Miller GM, Madras BK . Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7: 44–55.

    Article  CAS  PubMed  Google Scholar 

  370. Shen LX, Basilion JP, Stanton Jr VP . Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc Natl Acad Sci USA 1999; 96: 7871–7876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–216.

    Article  CAS  PubMed  Google Scholar 

  372. Duan J, Sanders AR, Molen JEV, Martinolich L, Mowry BJ, Levinson DF et al. Polymorphisms in the 5′-untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression. Mol Psychiatry 2003; 8: 901–910.

    Article  CAS  PubMed  Google Scholar 

  373. Robertson KD, Wolffe AP . DNA methylation in health and disease. Nat Rev Genet 2000; 1: 11–19.

    Article  CAS  PubMed  Google Scholar 

  374. Jaenisch R, Bird A . Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33(Suppl): 245–254.

    Article  CAS  PubMed  Google Scholar 

  375. Petronis A . The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 2004; 55: 965–970.

    Article  CAS  PubMed  Google Scholar 

  376. Harrison PJ, Owen MJ . Genes for schizophrenia?Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

  377. Moghaddam B . Bringing order to the glutamate chaos in schizophrenia. Neuron 2003; 40: 881–884.

    Article  CAS  PubMed  Google Scholar 

  378. Rieff HI, Ratzeman LT, Sapp DW, Yeh HH, Siegel RE, Corfas G . Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 1999; 19: 10757–10766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Wang Q, Liu L, Pei L, Ju W, Ahmadian G, Lu et al. Control of synaptic strength, a novel function of Akt. Neuron 2003; 38: 915–928.

    Article  CAS  PubMed  Google Scholar 

  380. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR . Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 2003; 160: 2209–2215.

    Article  PubMed  Google Scholar 

  381. Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C . Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis 2001; 8: 723–742.

    Article  CAS  PubMed  Google Scholar 

  382. Beffert U, Morfini G, Bock HH, Reyna H, Brady S, Herz L . Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem 2002; 277: 49958–49964.

    Article  CAS  PubMed  Google Scholar 

  383. Kim JY, Sun Q, Oglesbee M, Yoon SO . The role of ErbB2 signaling in the onset of terminal differentiation of oligodendrocytes in vivo. J Neurosci 2003; 23: 5561–5571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Yau HJ, Wang HF, Lai C, Liu FC . Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex 2003; 13: 252–264.

    Article  PubMed  Google Scholar 

  385. Harrison PJ . The neuropathology of primary mood disorder. Brain 2002; 125: 1428–1449.

    Article  PubMed  Google Scholar 

  386. Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the G72/G30 locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 2003; 72: 1131–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Bauman ML, Kemper TL . The neuropathology of the autism spectrum disorders: what have we learned? Novartis Found Symp 2003; 251: 112–122.

    PubMed  Google Scholar 

  388. Jellinger KA . Rett Syndrome—an update. J Neural Transm 2003; 110: 681–701.

    Article  CAS  PubMed  Google Scholar 

  389. Zoghbi HY . Postnatal neurodevelopmental disorders: meeting at the synapse? Science 2003; 302: 826–830.

    Article  CAS  PubMed  Google Scholar 

  390. Bishop GM, Robinson SR . The amyloid hypothesis: let sleeping dogmas lie? Neurobiol Aging 2003; 23: 1101–1105.

    Article  Google Scholar 

  391. Bertram L, Tanzi RE . Alzheimer' disease: one disorder, too many genes? Hum Mol Genet 2004; 13: R135–R141.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many people who have contributed to the ideas and data presented here, especially Jingshan Chen, Sharon Eastwood, Michael Egan, Joel Kleinman, Amanda Law, Barbara Lipska, Leah Sartorius, Cindy Shannon-Weickert, Richard Straub, and Liz Tunbridge. We are grateful to Leah Sartorius for creating Figure 2. We apologize to all the researchers whose work is not cited for lack of space. The Harrison lab is supported by the Stanley Medical Research Institute and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P J Harrison or D R Weinberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, P., Weinberger, D. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10, 40–68 (2005). https://doi.org/10.1038/sj.mp.4001558

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001558

Keywords

This article is cited by

Search

Quick links