Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area

Abstract

Nicotine produces rewarding and aversive motivational effects in humans and other animal species. Here, we report that the mammalian ventral tegmental area (VTA) represents a critical neural substrate for the mediation of both the rewarding and aversive properties of nicotine. We demonstrate that direct infusions of nicotine into the VTA can produce both rewarding and aversive motivational effects. While the rewarding effects of higher doses of nicotine were not attenuated by dopamine (DA) receptor blockade, blockade of mesolimbic DA signalling with either systemic or intra-nucleus accumbens (NAc) neuroleptic pretreatment potentiated the sensitivity to nicotine's rewarding properties over a three-order-of-magnitude dose range. Furthermore, the behavioural effects of lower doses of intra-VTA nicotine were reversed, switching the motivational valence of nicotine from aversive to rewarding. Our results suggest that blockade of mesolimbic DA signalling induced by neuroleptic medications may block selectively the aversive properties of nicotine, thus increasing the vulnerability to nicotine's rewarding and addictive properties by inducing a unique, drug-vulnerable phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rose JE, Corrigall WA . Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology 1997; 130: 28–40.

    Article  CAS  Google Scholar 

  2. Dalack GW, Healy DJ, Meador-Woodruff JH . Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry 1998; 155: 1490–1501.

    Article  CAS  Google Scholar 

  3. Peto R, Lopez AD, Boreham J, Thun M, Heath C . Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet 1992; 339: 1268–1278.

    Article  CAS  Google Scholar 

  4. United States Department of Health and Human Services. The Health Consequences of Smoking: Nicotine Addiction, Rep. Surgeon Gen. Office on Smoking and Health. Washington, DC: Government Printing Office, 1988.

  5. Corrigall WA, Franklin KBJ, Coen KM, Clark PBS . The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 1992; 107: 285–289.

    Article  CAS  Google Scholar 

  6. Corrigall WA, Coen KM . Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology 1991; 104: 171–176.

    Article  CAS  Google Scholar 

  7. Arnold JM, Roberts DCS . A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 1997; 57: 441–447.

    Article  CAS  Google Scholar 

  8. McEvoy JP, Freudenreich O, Levin ED, Rose JE . Haloperidol increases smoking in patients with schizophrenia. Psychopharmacology 1995; 119: 124–126.

    Article  CAS  Google Scholar 

  9. Caskey NH, Jarvik ME, Wirshing WC . The effects of dopaminergic D2 stimulation and blockade on smoking behavior. Exp Clin Pharmacol 1999; 7: 72–78.

    CAS  Google Scholar 

  10. Jarvik ME, Caskey NH, Wirshing WC, Madsen DC, Iwamoto-Schaap PN, Elins JL et al. Bromocriptine reduces cigarette smoking. Addiction 2000; 95: 1173–1183.

    Article  CAS  Google Scholar 

  11. Becerra L, Breiter HC, Wise R, Gonzalez G, Borsook D . Reward circuitry activation by noxious thermal stimuli. Neuron 2001; 32: 927–946.

    Article  CAS  Google Scholar 

  12. Pezze MA, Heidbreder CA, Feldon J, Murphy CA . Selective responding of nucleus accumbens core and shell dopamine to aversively conditioned contextual and discrete stimuli. Neuroscience 2001; 108: 91–102.

    Article  CAS  Google Scholar 

  13. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 2001; 158: 2015–2021.

    Article  CAS  Google Scholar 

  14. Dagher A, Bleicher C, Aston JAD, Gunn RN, Clarke PBS, Cumming P . Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 2001; 42: 48–53.

    Article  CAS  Google Scholar 

  15. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481–483.

    Article  CAS  Google Scholar 

  16. Mackey WB, van der Kooy D . Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning. Pharmacol Biochem Behav 1985; 22: 101–105.

    Article  CAS  Google Scholar 

  17. Nader K, van der Kooy D . Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. J Neurosci 1997; 17: 383–390.

    Article  CAS  Google Scholar 

  18. Laviolette SR, Nader K, van der Kooy D . Motivational state determines the functional role of the mesolimbic dopamine system in the mediation of opiate reward processes. Behav Brain Res 2002; 129: 17–29.

    Article  CAS  Google Scholar 

  19. Hiroi N, White NM . The reserpine-sensitive dopamine pool mediates (+)-amphetamine-conditioned reward in the place preference paradigm. Brain Res 1990; 510: 33–42.

    Article  CAS  Google Scholar 

  20. Laviolette SR, van der Kooy D . Blockade of the α7 nicotinic receptor subunit switches the motivational valence of nicotine from rewarding to aversive in the ventral tegmental area. Behav Pharmacol 2001; 12 (Suppl 1): S57.

    Google Scholar 

  21. Nissell M, Nomikos GG, Svensson TH . Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 1994; 16: 36–44.

    Article  Google Scholar 

  22. Jorenby DE, Steinpreis RE, Sherman JE, Baker TB . Aversion instead of preference learning indicated by nicotine place conditioning in rats. Psychopharmacology 1990; 101: 533–538.

    Article  CAS  Google Scholar 

  23. Jaeger TV, van der Kooy D . Separate neural substrates mediate the motivating and discriminative properties of morphine. Behav Neurosci 1996; 110: 181–201.

    Article  CAS  Google Scholar 

  24. Wiley JL, James JR, Rosecrans JA . Discriminative stimulus properties of nicotine: approaches to evaluating potential nicotinic receptor agonists and antagonists. Drug Dev Res 1996; 38: 222–230.

    Article  CAS  Google Scholar 

  25. Corrigall WA, Coen KM . Dopamine mechanisms play at best a small role in the nicotine discriminative stimulus. Pharmacol Biochem Behav 1994; 3: 817–820.

    Article  Google Scholar 

  26. Hunt T, Amit Z . Conditioned taste aversion induced by self-administered drugs: paradox revisited. Neurosci Biobehav Rev 1987; 11: 107–130.

    Article  CAS  Google Scholar 

  27. Martin GM, Bechara A, van der Kooy D . Morphine pre-exposure attenuates the aversive properties of opiates without pre-exposure to the aversive properties. Pharmacol Biochem Behav 1988; 30: 687–692.

    Article  CAS  Google Scholar 

  28. Bell SM, Thiele TE, Seeley RJ, Bernstein IL, Woods SC . Effects of food deprivation on conditioned taste aversion in rats. Pharmacol Biochem Behav 1998; 60: 459–466.

    Article  CAS  Google Scholar 

  29. Shoaib M, Stolerman IP . Conditioned taste aversion in rats after intracerebral administration of nicotine. Behav Pharmacol 1995; 6: 375–385.

    CAS  PubMed  Google Scholar 

  30. Haney M, Ward AS, Foltin RW, Fischman MW . Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration in humans. Psychopharmacology 2001; 155: 330–337.

    Article  CAS  Google Scholar 

  31. Koob GF, Le HT, Creese I . The D1 dopamine antagonist SCH 23390 increases cocaine self-administration in the rat. Neurosci Lett 1987; 79: 315–320.

    Article  CAS  Google Scholar 

  32. Menza MA, Grossman N, Van Horn M, Cody R, Forman N . Smoking and movement disorders in psychiatric patients. Biol Psychiatry 1991; 30: 109–115.

    Article  CAS  Google Scholar 

  33. Yassa R, Lal S, Korpassy A, Ally J . Nicotine exposure and tardive dyskinesia. Biol Psychiatry 1987; 22: 67–72.

    Article  CAS  Google Scholar 

  34. Apud JA, Egan MF, Wyatt RJ . Effects of smoking during antipsychotic withdrawal in patients with chronic schizophrenia. Schizophr Res 2000; 46: 119–127.

    Article  CAS  Google Scholar 

  35. Goff DC, Henderson DC, Amico E . Cigarette smoking in schizophrenia: relationship to psychopathology and medication side effects. Am J Psychiatry 1992; 149: 1189–1194.

    Article  CAS  Google Scholar 

  36. Horvitz JC . Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 2000; 96: 651–656.

    Article  CAS  Google Scholar 

  37. Takahashi H, Takada Y, Nagai N, Urano T, Takada A . Effects of nicotine and footshock stress on dopamine release in the striatum and nucleus accumbens. Brain Res Bull 1998; 45: 157–162.

    Article  CAS  Google Scholar 

  38. Anso K, Miyata H, Hironaka N, Tsuda T, Yanagita T . The discriminative effects of nicotine and their central sites in rats. Yakubutsu Seishin Kodo 1993; 13: 129–136.

    Google Scholar 

Download references

Acknowledgements

This work was supported by CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Laviolette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laviolette, S., van der Kooy, D. Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area. Mol Psychiatry 8, 50–59 (2003). https://doi.org/10.1038/sj.mp.4001197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001197

Keywords

This article is cited by

Search

Quick links