Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus

Abstract

It is well accepted that events that interfere with the normal program of neuronal differentiation and brain maturation may be relevant for the etiology of psychiatric disorders, setting the stage for synaptic disorganization that becomes functional later in life. In order to investigate molecular determinants for these events, we examined the modulation of the neurotrophin brain-derived neurotrophic factor (BDNF) and the glutamate NMDA receptor following 24 h maternal separation (MD) on postnatal day 9. We found that in adulthood the expression of BDNF as well as of NR-2A and NR-2B, two NMDA receptor forming subunits, were significantly reduced in the hippocampus of MD rats whereas, among other structures, a slight reduction of NR-2A and 2B was detected only in prefrontal cortex. These changes were not observed acutely, nor in pre-weaning animals. Furthermore we found that in MD rats the modulation of hippocampal BDNF in response to an acute stress was altered, indicating a persistent functional impairment in its regulation, which may subserve a specific role for coping with challenging situations. We propose that adverse events taking place during brain maturation can modulate the expression of molecular players of cellular plasticity within selected brain regions, thus contributing to permanent alterations in brain function, which might ultimately lead to an increased vulnerability for psychiatric diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Francis DD, Meaney MJ . Maternal care and the development of stress responses Curr Opin Neurobiol 1999 9: 128–134

    Article  CAS  Google Scholar 

  2. Francis DD, Champagne FA, Liu D, Meaney MJ . Maternal care, gene expression, and the development of individual differences in stress reactivity Ann N Y Acad Sci USA 1999 896: 66–84

    Article  CAS  Google Scholar 

  3. Levine S . Infantile experience and resistence to physiological stress Science 1957 126: 405–406

    Article  CAS  Google Scholar 

  4. Meaney MJ, Aitken DH, van Berkel C, Bhatnagar S, Sapolsky RM . Effect of neonatal handling on age-related impairments associated with the hippocampus Science 1988 239: 766–768

    Article  CAS  Google Scholar 

  5. van Oers HJ, de Kloet ER, Li C, Levine S . The ontogeny of glucocorticoid negative feedback: influence of maternal deprivation Endocrinology 1998 139: 2838–2846

    Article  CAS  Google Scholar 

  6. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress Science 1997 277: 1659–1662

    Article  CAS  Google Scholar 

  7. Vallee M, MacCari S, Dellu F, Simon H, Le Moal M, Mayo W . Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat Eur J Neurosci 1999 11: 2906–2916

    Article  CAS  Google Scholar 

  8. Lemaire V, Koehl M, Le Moal M, Abrous DN . Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus Proc Natl Acad Sci USA 2000 97: 11032–11037

    Article  CAS  Google Scholar 

  9. Oitzl MS, Workel JO, Fluttert M, Frosch F, De Kloet ER . Maternal deprivation affects behaviour from youth to senescence: amplification of individual differences in spatial learning and memory in senescent Brown Norway rats Eur J Neurosci 2000 12: 3771–3780

    Article  CAS  Google Scholar 

  10. McEwen BS . The neurobiology of stress: from serendipity to clinical relevance Brain Res 2000 886: 172–189

    Article  CAS  Google Scholar 

  11. McEwen BS . Allostasis and allostatic load: implications for neuropsychopharmacology Neuropsychopharmacology 2000 22: 108–124

    Article  CAS  Google Scholar 

  12. Ellenbroek BA, van den Kroonenberg PT, Cools AR . The effects of an early stressful life event on sensorimotor gating in adult rats Schizophrenia Res 1998 30: 251–260

    Article  CAS  Google Scholar 

  13. Nawa H, Takahashi M, Patterson PH . Cytokine and growth factor involvement in schizophrenia—support for the developmental model Mol Psychiatry 2000 5: 594–603

    Article  CAS  Google Scholar 

  14. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients Mol Psychiatry 2000 5: 293–300

    Article  CAS  Google Scholar 

  15. Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA . Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia Am J Psychiatry 2000 157: 1141–1149

    Article  CAS  Google Scholar 

  16. Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics J Neurosci 1996 16: 19–30

    Article  CAS  Google Scholar 

  17. Lewin GR, Barde YA . Physiology of the neurotrophins Ann Rev Neurosci 1996 19: 289–317

    Article  CAS  Google Scholar 

  18. Poo MM . Neurotrophins as synaptic modulators [Review] Nature Rev Neurosci 2001 2: 24–32

    Article  CAS  Google Scholar 

  19. Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T . Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats J Neurosci 2000 20: 7116–7121

    Article  CAS  Google Scholar 

  20. Lu B, Gottschalk W . Modulation of hippocampal synaptic transmission and plasticity by neurotrophins Prog Brain Res 2000 128: 231–241

    Article  CAS  Google Scholar 

  21. Black IB . Trophic regulation of synaptic plasticity J Neurobiol 1999 41: 108–118

    Article  CAS  Google Scholar 

  22. Thoenen H . Neurotrophins and neuronal plasticity Science 1995 270: 593–598

    Article  CAS  Google Scholar 

  23. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates Academic Press: New York 1996

    Google Scholar 

  24. Molteni R, Lipska BK, Weinberger DR, Racagni G, Riva MA . Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia Mol Psychiatry 2001 6: 285–292

    Article  CAS  Google Scholar 

  25. Riva MA, Tascedda F, Molteni R, Racagni G . Regulation of NMDA receptor subunit mRNA expression in the rat brain during postnatal development Mol Brain Res 1994 25: 209–216

    Article  CAS  Google Scholar 

  26. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus J Neurosci 1995 15: 1768–1777

    Article  CAS  Google Scholar 

  27. van Oers HJ, de Kloet ER, Whelan T, Levine S . Maternal deprivation effect on the infant's neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone J Neurosci 1998 18: 10171–10179

    Article  CAS  Google Scholar 

  28. van Oers HJ, de Kloet ER, Levine S . Early vs late maternal deprivation differentially alters the endocrine and hypothalamic responses to stress Dev Brain Res 1998 111: 245–252

    Article  CAS  Google Scholar 

  29. Bhave SV, Ghoda L, Hoffman PL . Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action J Neurosci 1999 19: 3277–3286

    Article  CAS  Google Scholar 

  30. Marini AM, Rabin SJ, Lipsky RH, Mocchetti I . Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-D-aspartate J Biol Chem 1998 273: 29394–29399

    Article  CAS  Google Scholar 

  31. Song DK, Choe B, Bae JH, Park WK, Han IS, Ho WK et al. Brain-derived neurotrophic factor rapidly potentiates synaptic transmission through NMDA, but suppresses it through non-NMDA receptors in rat hippocampal neuron Brain Res 1998 799: 176–179

    Article  CAS  Google Scholar 

  32. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M . Brain corticosteroid receptor balance in health and disease Endocr Rev 1998 19: 269–301

    CAS  PubMed  Google Scholar 

  33. Magarinos AM, Verdugo JM, McEwen BS . Chronic stress alters synaptic terminal structure in hippocampus Proc Natl Acad Sci USA 1997 94: 14002–14008

    Article  CAS  Google Scholar 

  34. McEwen BS . Protective and damaging effects of stress mediators N Engl J Med 1998 338: 171–179

    Article  CAS  Google Scholar 

  35. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ . Maternal care, hippocampal synaptogenesis and cognitive development in rats Nature Neurosci 2000 3: 799–806

    Article  CAS  Google Scholar 

  36. Lipska BK, Weinberger DR . Subchronic treatment with haloperidol and clozapine in rats with neonatal excitotoxic hippocampal damage Neuropsychopharmacology 1994 10: 199–205

    Article  CAS  Google Scholar 

  37. Duncan GE, Sheitman BB, Lieberman JA . An integrated view of pathophysiological models of schizophrenia Brain Res Brain Res Rev 1999 29: 250–264

    Article  CAS  Google Scholar 

  38. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR . Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine Psychopharmacology 1995 122: 35–43

    Article  CAS  Google Scholar 

  39. Kang H, Schuman EM . Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus Science 1995 267: 1658–1662

    Article  CAS  Google Scholar 

  40. Thoenen H . Neurotrophins and activity-dependent plasticity Prog Brain Res 2000 128: 183–191

    Article  CAS  Google Scholar 

  41. Shieh PB, Ghosh A . Molecular mechanisms underlying activity-dependent regulation of BDNF expression [Review] J Neurobiol 1999 41: 127–134

    Article  CAS  Google Scholar 

  42. Linnarsson S, Bjorklund A, Ernfors P . Learning deficit in BDNF mutant mice Eur J Neurosci 1997 9: 2581–2587

    Article  CAS  Google Scholar 

  43. Pozzo-Miller LD, Gottschalk W, Zhang L, McDermott K, Du J, Gopalakrishnan R et al. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice J Neurosci 1999 19: 4972–4983

    Article  CAS  Google Scholar 

  44. Barde YA . Neurotrophic factors: an evolutionary perspective [Review] J Neurobiol 1994 25: 1329–1333

    Article  CAS  Google Scholar 

  45. Siegel GJ, Chauhan NB . Neurotrophic factors in Alzheimer's and Parkinson's disease brain Brain Res Brain Res Rev 2000 33: 199–227

    Article  CAS  Google Scholar 

  46. Ghosh A, Carnahan J, Greenberg ME . Requirement for BDNF in activity-dependent survival of cortical neurons Science 1994 263: 1618–1623

    Article  CAS  Google Scholar 

  47. Batchelor PE, Liberatore GT, Porritt MJ, Donnan GA, Howells DW . Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum Eur J Neurosci 2000 12: 3462–3468

    Article  CAS  Google Scholar 

  48. Young D, Lawlor PA, Leone P, Dragunow M, During MJ . Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective Nature Med 1999 5: 448–453

    Article  CAS  Google Scholar 

  49. Biagini G, Pich EM, Carani C, Marrama P, Agnati LF . Postnatal maternal separation during the stress hyporesponsive period enhances the adrenocortical response to novelty in adult rats by affecting feedback regulation in the CA1 hippocampal field Int J Develop Neurosci 1998 16: 187–197

    Article  CAS  Google Scholar 

  50. Hall J, Thomas KL, Everitt BJ . Rapid and selective induction of BDNF expression in the hippocampus during contextual learning Nature Neurosci 2000 3: 533–535

    Article  CAS  Google Scholar 

  51. Tokuyama W, Okuno H, Hashimoto T, Xin Li Y, Miyashita Y . BDNF upregulation during declarative memory formation in monkey inferior temporal cortex Nature Neurosci 2000 3: 1134–1142

    Article  CAS  Google Scholar 

  52. Seeburg PH . The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels Trends Neurosci 1993 16: 359–365

    Article  CAS  Google Scholar 

  53. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia Cell 1999 98: 427–436

    Article  CAS  Google Scholar 

  54. Jentsch JD, Roth RH . The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia Neuropsychopharmacology 1999 20: 201–225

    Article  CAS  Google Scholar 

  55. Bliss TV, Collingridge GL . A synaptic model of memory: long-term potentiation in the hippocampus Nature 1993 361: 31–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr G Yankopoulos for providing cDNA probes to BDNF and Trk-B. We also wish to thank Dr Raffaella Molteni for helpful discussion. In part supported by a NARSAD Young Investigator Award to MAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Riva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roceri, M., Hendriks, W., Racagni, G. et al. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7, 609–616 (2002). https://doi.org/10.1038/sj.mp.4001036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001036

Keywords

This article is cited by

Search

Quick links