Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An operant social self-administration and choice model in rats

Abstract

It is difficult to translate results from animal research on addiction to an understanding of the behavior of human drug users. Despite decades of basic research on neurobiological mechanisms of drug addiction, treatment options remain largely unchanged. A potential reason for this is that mechanistic studies using rodent models do not incorporate a critical facet of human addiction: volitional choices between drug use and non-drug social rewards (e.g., employment and family). Recently, we developed an operant model in which rats press a lever for rewarding social interaction with a peer and then choose between an addictive drug (heroin or methamphetamine) and social interaction. Using this model, we showed that rewarding social interaction suppresses drug self-administration, relapse to drug seeking, and brain responses to drug-associated cues. Here, we describe a protocol for operant social interaction using a discrete-trial choice between drugs and social interaction that causes voluntary abstinence from the drug and tests for incubation of drug craving (the time-dependent increase in drug seeking during abstinence). This protocol is flexible but generally requires 8–9 weeks for completion. We also provide a detailed description of the technical requirements and procedures for building the social self-administration and choice apparatus. Our protocol provides a reliable way to study the role of operant social reward in addiction and addiction vulnerability in the context of choices. We propose that this protocol can be used to study brain mechanisms of operant social reward and potentially impairments in social reward in animal models of psychiatric disorders and pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Social-choice self-administration apparatus.
Fig. 2: Protocol timeline.
Fig. 3: Using the protocol to study incubation of drug craving.
Fig. 4: Generalization of the protocol to Long–Evans rats and remifentanil.
Fig. 5: Using the protocol to study addiction vulnerability.
Fig. 6: Using the protocol to study the motivation to seek operant social rewards.
Fig. 7: Using the protocol to study social seeking.

Similar content being viewed by others

Data and code availability

The Med-Associated programs are available from the corresponding authors (M.V. and Y.S.) upon request.

References

  1. Dong, Y., Taylor, J. R., Wolf, M. E. & Shaham, Y. Circuit and synaptic plasticity mechanisms of drug relapse. J. Neurosci. 37, 10867–10876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jonkman, S. & Kenny, P. J. Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs. Neuropsychopharmacology 38, 198–211 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Nestler, E. J. Epigenetic mechanisms of drug addiction. Neuropharmacology 76(Pt B), 259–268 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. de Wit, H., Epstein, D. H. & Preston, K. L. Does human language limit translatability of clinical and preclinical addiction research? Neuropsychopharmacology 43, 1985–1988 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Heilig, M., Epstein, D. H., Nader, M. A. & Shaham, Y. Time to connect: bringing social context into addiction neuroscience. Nat. Rev. Neurosci. 17, 592–599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aklin, W. M. et al. A therapeutic workplace for the long-term treatment of drug addiction and unemployment: eight-year outcomes of a social business intervention. J. Subst. Abus. Treat. 47, 329–338 (2014).

    Article  Google Scholar 

  7. Venniro, M. et al. Volitional social interaction prevents drug addiction in rat models. Nat. Neurosci. 21, 1520–1529 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azrin, N. H. et al. Follow-up results of supportive versus behavioral therapy for illicit drug use. Behav. Res. Ther. 34, 41–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Hunt, G. M. & Azrin, N. H. A community-reinforcement approach to alcoholism. Behav. Res. Ther. 11, 91–104 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Lash, S. J., Burden, J. L., Monteleone, B. R. & Lehmann, L. P. Social reinforcement of substance abuse treatment aftercare participation: impact on outcome. Addict. Behav. 29, 337–342 (2004).

    Article  PubMed  Google Scholar 

  11. Roozen, H. G. et al. A systematic review of the effectiveness of the community reinforcement approach in alcohol, cocaine and opioid addiction. Drug Alcohol Depend. 74, 1–13 (2004).

    Article  PubMed  Google Scholar 

  12. Stitzer, M. L., Jones, H. E., Tuten, M. & Wong, C. Community reinforcement approach and contingency management interventions for substance abuse in Handbook of Motivational Counseling: Goal-Based Approaches to Assessment and Intervention with Addiction and Other Problems (eds Cox, W. M. & Klinger, E.), Ch. 23 (Wiley, Chichester, 2011).

  13. Banks, M. L. & Negus, S. S. Insights from preclinical choice models on treating drug addiction. Trends Pharmacol. Sci. 38, 181–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Nader, M. A. & Woolverton, W. L. Cocaine vs. food choice in rhesus monkeys: effects of increasing the response cost for cocaine. NIDA Res. Monogr. 105, 621 (1990).

    CAS  PubMed  Google Scholar 

  15. Ahmed, S. H. Trying to make sense of rodents’ drug choice behavior. Prog. Neuropsychopharmacol. Biol. Psychiatry 87, 3–10 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Lenoir, M., Serre, F., Cantin, L. & Ahmed, S. H. Intense sweetness surpasses cocaine reward. PLoS One 2, e698 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Spragg, S. D. S. Morphine addiction in chimpanzees. Comp. Psychol. Mono. 15, 132 (1940).

    Google Scholar 

  18. Venniro, M., Caprioli, D. & Shaham, Y. Novel models of drug relapse and craving after voluntary abstinence. Neuropsychopharmacology 44, 234–235 (2019).

    Article  PubMed  Google Scholar 

  19. Caprioli, D. et al. Effect of the novel positive allosteric modulator of metabotropic glutamate receptor 2 AZD8529 on incubation of methamphetamine craving after prolonged voluntary abstinence in a rat model. Biol. Psychiatry 78, 463–473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caprioli, D. et al. Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence. J. Neurosci. 37, 1014–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Venniro, M. et al. The anterior insular cortex→central amygdala glutamatergic pathway is critical to relapse after contingency management. Neuron 96, 414–427.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Venniro, M., Zhang, M., Shaham, Y. & Caprioli, D. Incubation of methamphetamine but not heroin craving after voluntary abstinence in male and female rats. Neuropsychopharmacology 42, 1126–1135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zimmer, B. A., Oleson, E. B. & Roberts, D. C. The motivation to self-administer is increased after a history of spiking brain levels of cocaine. Neuropsychopharmacology 37, 1901–1910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahmed, S. H. & Koob, G. F. Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Venniro, M., Caprioli, D. & Shaham, Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog. Brain Res. 224, 25–52 (2016).

    Article  PubMed  Google Scholar 

  27. Venniro, M., Russell, T. I., Zhang, M. & Shaham, Y. Operant social reward decreases incubation of heroin craving in male and female rats. Biol. Psychiatry 86, 848–856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grimm, J., Hope, B., Wise, R. & Shaham, Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412, 141–142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shalev, U., Grimm, J. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol. Rev. 54, 1–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Vanderschuren, L. J., Achterberg, E. J. & Trezza, V. The neurobiology of social play and its rewarding value in rats. Neurosci. Biobehav. Rev. 70, 86–105 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bardo, M. T., Neisewander, J. L. & Kelly, T. H. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol. Rev. 65, 255–290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, M. A. Peer influences on drug self-administration: social facilitation and social inhibition of cocaine intake in male rats. Psychopharmacol. (Berl.) 224, 81–90 (2012).

    Article  CAS  Google Scholar 

  33. Solinas, M., Chauvet, C., Thiriet, N., El Rawas, R. & Jaber, M. Reversal of cocaine addiction by environmental enrichment. Proc. Natl Acad. Sci. USA 105, 17145–17150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zlebnik, N. E. & Carroll, M. E. Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacol. (Berl.) 232, 3507–3513 (2015).

    Article  CAS  Google Scholar 

  35. Fritz, M. et al. Reversal of cocaine-conditioned place preference and mesocorticolimbic Zif268 expression by social interaction in rats. Addict. Biol. 16, 273–284 (2011).

    Article  PubMed  Google Scholar 

  36. Zernig, G., Kummer, K. K. & Prast, J. M. Dyadic social interaction as an alternative reward to cocaine. Front. Psychiatry 4, 100 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Peitz, G. W. et al. Peer influences on drug self-administration: an econometric analysis in socially housed rats. Behav. Pharmacol. 24, 114–123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smith, M. A. & Pitts, E. G. Social preference and drug self-administration: a preclinical model of social choice within peer groups. Drug Alcohol Depend. 135, 140–145 (2014).

    Article  PubMed  Google Scholar 

  39. Smith, M. A., Strickland, J. C., Bills, S. E. & Lacy, R. T. The effects of a shared history of drug exposure on social choice. Behav. Pharmacol. 26, 631–635 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Strickland, J. C. & Smith, M. A. Animal models of social contact and drug self-administration. Pharmacol. Biochem. Behav. 136, 47–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Azrin, N. H. Improvements in the community-reinforcement approach to alcoholism. Behav. Res. Ther. 14, 339–348 (1976).

    Article  CAS  PubMed  Google Scholar 

  42. Silverman, K., DeFulio, A. & Sigurdsson, S. O. Maintenance of reinforcement to address the chronic nature of drug addiction. Prev. Med. 55(Suppl.), S46–S53 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Heyman, G. M. Addiction and choice: theory and new data. Front. Psychiatry 4, 31 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Monterosso, J. & Ainslie, G. The behavioral economics of will in recovery from addiction. Drug Alcohol Depend. 90(Suppl. 1), S100–S111 (2007).

    Article  PubMed  Google Scholar 

  45. Stitzer, M. & Petry, N. Contingency management for treatment of substance abuse. Annu. Rev. Clin. Psychol. 2, 411–434 (2006).

    Article  PubMed  Google Scholar 

  46. Richardson, N. R. & Roberts, D. C. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J. Neurosci. Methods 66, 1–11 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T.I. Russell for her help during the experiments and D. Harvey for proofreading and editorial comments on the original version of the manuscript. The research was supported by the Intramural Research Program of NIDA, a fellowship from the NIH Center on Compulsive Behaviors (M.V.), and a NARSAD Distinguished Investigator Grant Award (Y.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.V. and Y.S. designed the experiments; M.V. ran the experiments and collected the data; M.V. and Y.S. analyzed the data; M.V. and Y.S. wrote the paper.

Corresponding authors

Correspondence to Marco Venniro or Yavin Shaham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Francesco Papaleo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Venniro, M. et al. Nat. Neurosci. 21, 1520–1529 (2018): https://doi.org/10.1038/s41593-018-0246-6

Venniro, M., Russell, T. I., Zhang, M. & Shaham, Y. Biol. Psychiatry 86, 848–856. (2019): https://doi.org/10.1016/j.biopsych.2019.05.018

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venniro, M., Shaham, Y. An operant social self-administration and choice model in rats. Nat Protoc 15, 1542–1559 (2020). https://doi.org/10.1038/s41596-020-0296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-0296-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing