Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The functional organization of axonal mRNA transport and translation

Abstract

Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs — known as RNA regulons — that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon’s proteome to be modulated to meet its physiological needs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ribonucleoprotein (RNP)-coupled transport of mRNAs into axons.
Fig. 2: Defining axonal mRNA regulons.
Fig. 3: The fate of mRNAs on reaching their axonal destinations.
Fig. 4: Distinct axonal translational control mechanisms have different functional outcomes.

Similar content being viewed by others

References

  1. Steward, O. & Levy, W. B. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001).

    CAS  PubMed  Google Scholar 

  3. Kosik, K. S. Life at low copy number: how dendrites manage with so few mRNAs. Neuron 92, 1168–1180 (2016).

    CAS  PubMed  Google Scholar 

  4. Ohashi, R. & Shiina, N. Cataloguing and selection of mRNAs localized to dendrites in neurons and regulated by RNA-binding proteins in RNA granules. Biomolecules 10, 167 (2020).

    CAS  PubMed Central  Google Scholar 

  5. Tobias, G. & Koenig, E. Axonal protein synthesizing activity during the early outgrowth period following neurotomy. Exp. Neurol. 49, 221–234 (1975).

    CAS  PubMed  Google Scholar 

  6. Koenig, E. & Martin, R. Cortical plaque-like structures indentify ribosome-containing domains in the Mauthner cell axon. J. Neurosci. 16, 1400–1411 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Koenig, E. Synthetic mechanisms in the axon—II: RNA in myelin-free axons of the cat. J. Neurochem. 12, 357–361 (1965).

    CAS  PubMed  Google Scholar 

  8. Tennyson, V. M. The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J. Cell Biol. 44, 62–79 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guiditta, A., Menichini, E., Capano, C. & Langella, M. Active polysomes in the axoplasm of the squid giant axon. J. Neurosci. Res. 28, 18–28 (1991).

    Google Scholar 

  10. Giuditta, A., Metafora, S., Flesani, A. & Rio, A. D. Factors for protein synthesis in the axoplasm of giant squid axon. J. Neurochem. 28, 1393–1395 (1977).

    CAS  PubMed  Google Scholar 

  11. Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).

    CAS  PubMed  Google Scholar 

  12. Zhang, H. L. et al. Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 31, 261–275 (2001).

    CAS  PubMed  Google Scholar 

  13. Hanz, S. et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40, 1095–1104 (2003).

    CAS  PubMed  Google Scholar 

  14. Brittis, P. A., Lu, Q. & Flanagan, J. G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    CAS  PubMed  Google Scholar 

  15. Zheng, J. Q. et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J. Neurosci. 21, 9291–9303 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung, H., Yoon, B. C. & Holt, C. E. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat. Rev. Neurosci. 13, 308–324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Das, S., Singer, R. H. & Yoon, Y. J. The travels of mRNAs in neurons: do they know where they are going? Curr. Opin. Neurobiol. 57, 110–116 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steward, O. mRNA localization in neurons: a multipurpose mechanism? Neuron 18, 9–12 (1997).

    CAS  PubMed  Google Scholar 

  19. Kar, A., Lee, S. & Twiss, J. Expanding axonal transcriptome brings new functions for axonally synthesized proteins in health and disease. Neuroscientist 24, 111–129 (2018).

    CAS  PubMed  Google Scholar 

  20. Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007). This review summarizes the evidence for mRNA cohorts encoding functionally linked proteins, termed ‘RNA regulons’, being co-regulated by shared RNPs. These regulons provide functional organization for post-transcriptional regulation.

    CAS  PubMed  Google Scholar 

  21. Andreassi, C., Crerar, H. & Riccio, A. Post-transcriptional processing of mRNA in neurons: the vestiges of the RNA world drive transcriptome diversity. Front. Mol. Neurosci. 11, 304 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    PubMed  PubMed Central  Google Scholar 

  23. Colak, D., Ji, S. J., Porse, B. T. & Jaffrey, S. R. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 153, 1252–1265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, S. et al. hnRNPs binding to the axonal localization motifs of Nrn1 and HMGB1 mRNAs define growth-associated RNA regulons. Mol. Cell Proteom. 17, 2091–2106 (2018).

    CAS  Google Scholar 

  25. Parchure, A., Munson, M. & Budnik, V. Getting mRNA-containing ribonucleoprotein granules out of a nuclear back door. Neuron 96, 604–615 (2017).

    CAS  PubMed  Google Scholar 

  26. Palacios, I. M. RNA processing: splicing and the cytoplasmic localisation of mRNA. Curr. Biol. 12, R50–R52 (2002).

    CAS  PubMed  Google Scholar 

  27. Pan, F., Huttelmaier, S., Singer, R. H. & Gu, W. ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol. Cell Biol. 27, 8340–8351 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry, R. B. et al. Nucleolin-mediated RNA localization regulates neuron growth and cycling cell size. Cell Rep. 16, 1664–1676 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cosker, K. E., Fenstermacher, S. J., Pazyra-Murphy, M. F., Elliott, H. L. & Segal, R. A. The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability. Nat. Neurosci. 19, 690–696 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Terenzio, M. et al. Locally translated mTOR controls axonal local translation in nerve injury. Science 359, 1416–1421 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Willis, D. E. et al. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J. Cell Biol. 178, 965–980 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewis, R. A., Gagnon, J. A. & Mowry, K. L. PTB/hnRNP I is required for RNP remodeling during RNA localization in Xenopus oocytes. Mol. Cell Biol. 28, 678–686 (2008).

    CAS  PubMed  Google Scholar 

  33. Lewis, R. A. & Mowry, K. L. Ribonucleoprotein remodeling during RNA localization. Differentiation 75, 507–518 (2007).

    CAS  PubMed  Google Scholar 

  34. Perry, R. B. et al. Subcellular knockout of importin beta1 perturbs axonal retrograde signaling. Neuron 75, 294–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoo, S. et al. A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3′ untranslated region AU-rich regulatory element. J. Neurochem. 126, 792–804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Akten, B. et al. Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc. Natl Acad. Sci. USA 108, 10337–10342 (2011).

    CAS  PubMed  Google Scholar 

  37. Otsuka, H., Fukao, A., Funakami, Y., Duncan, K. E. & Fujiwara, T. Emerging evidence of translational control by AU-rich element-binding proteins. Front. Genet. 10, 332 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gomes, C. et al. Axonal localization of neuritin/CPG15 mRNA is limited by competition for HuD binding. J. Cell Sci. 130, 3650–3662 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, T. P., Sahoo, P. K., Kar, A. N. & Twiss, J. L. Intra-axonal mechanisms driving axon regeneration. Brain Res. 1740, 146864 (2020).

    CAS  PubMed  Google Scholar 

  40. Hughes, S. C. & Simmonds, A. J. Drosophila mRNA localization during later development: past, present, and future. Front. Genet. 10, 135 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kannaiah, S. & Amster-Choder, O. Protein targeting via mRNA in bacteria. Biochim. Biophys. Acta 1843, 1457–1465 (2014).

    CAS  PubMed  Google Scholar 

  42. Lazzaretti, D. & Bono, F. mRNA localization in metazoans: a structural perspective. RNA Biol. 14, 1473–1484 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Tian, L., Chou, H. L., Fukuda, M., Kumamaru, T. & Okita, T. W. mRNA localization in plant cells. Plant Physiol. 182, 97–109 (2020).

    CAS  PubMed  Google Scholar 

  44. Bolognani, F., Contente-Cuomo, T. & Perrone-Bizzozero, N. I. Novel recognition motifs and biological functions of the RNA-binding protein HuD revealed by genome-wide identification of its targets. Nucleic Acids Res. 38, 117–130 (2010).

    CAS  PubMed  Google Scholar 

  45. Conway, A. E. et al. Enhanced CLIP uncovers IMP protein-RNA targets in human pluripotent stem cells important for cell adhesion and survival. Cell Rep. 15, 666–679 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Maurin, T. et al. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res. 46, 6344–6355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez, J. C. et al. Pum2 shapes the transcriptome in developing axons through retention of target mRNAs in the cell body. Neuron 104, 931–946 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Moradi, M. et al. Differential roles of alpha-, beta-, and gamma-actin in axon growth and collateral branch formation in motoneurons. J. Cell Biol. 216, 793–814 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Donnelly, C. J. et al. Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J. 30, 4665–4677 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossoll, W. et al. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum. Mol. Genet. 11, 93–105 (2002).

    CAS  PubMed  Google Scholar 

  52. Glinka, M. et al. The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons. Hum. Mol. Genet. 19, 1951–1966 (2010).

    CAS  PubMed  Google Scholar 

  53. Fallini, C., Donlin-Asp, P. G., Rouanet, J. P., Bassell, G. J. & Rossoll, W. Deficiency of the survival of motor neuron protein impairs mRNA localization and local translation in the growth cone of motor neurons. J. Neurosci. 36, 3811–3820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Donlin-Asp, P. G. et al. The survival of motor neuron protein acts as a molecular chaperone for mRNP assembly. Cell Rep. 18, 1660–1673 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Moujaber, O. & Stochaj, U. Cytoplasmic RNA granules in somatic maintenance. Gerontology 64, 485–494 (2018).

    CAS  PubMed  Google Scholar 

  56. Miller, L. C. et al. Combinations of DEAD box proteins distinguish distinct types of RNA: protein complexes in neurons. Mol. Cell Neurosci. 40, 485–495 (2009).

    CAS  PubMed  Google Scholar 

  57. Christie, S. B., Akins, M. R., Schwob, J. E. & Fallon, J. R. The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J. Neurosci. 29, 1514–1524 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. El Fatimy, R. et al. Tracking the fragile X mental retardation protein in a highly ordered neuronal ribonucleoparticles population: a link between stalled polyribosomes and RNA granules. PLoS Genet. 12, e1006192 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Akins, M. R. et al. Axonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brains. Hum. Mol. Genet. 26, 192–209 (2017).

    CAS  PubMed  Google Scholar 

  60. Batish, M., van den Bogaard, P., Kramer, F. R. & Tyagi, S. Neuronal mRNAs travel singly into dendrites. Proc. Natl Acad. Sci. USA 109, 4645–4650 (2012).

    CAS  PubMed  Google Scholar 

  61. Mateu-Regue, A. et al. Single mRNP analysis reveals that small cytoplasmic mRNP granules represent mRNA singletons. Cell Rep. 29, 736–748 e734 (2019).

    CAS  PubMed  Google Scholar 

  62. Langdon, E. M. & Gladfelter, A. S. A new lens for RNA localization: liquid-liquid phase separation. Annu. Rev. Microbiol. 72, 255–271 (2018).

    CAS  PubMed  Google Scholar 

  63. Guo, L. & Shorter, J. It’s raining liquids: RNA tunes viscoelasticity and dynamics of membraneless organelles. Mol. Cell 60, 189–192 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Xue, Y. C. et al. Dysregulation of RNA-binding proteins in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 13, 78 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl Acad. Sci. USA 114, E2466–E2475 (2017).

    CAS  PubMed  Google Scholar 

  66. Tsang, B. et al. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc. Natl Acad. Sci. USA 116, 4218–4227 (2019).

    CAS  PubMed  Google Scholar 

  67. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345 e328 (2020).

    CAS  PubMed  Google Scholar 

  68. Guillen-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 e317 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sahoo, P. et al. A translational switch drives axonal stress granule disassembly through casein kinase 2α. Curr. Biol. https://doi.org/10.1016/j.cub.2020.09.043 (2020). Together with Yang at al. (2020) and Guillen-Boixet et al. (2020), this study shows the role of RNA interactions in LLPS by stress granule protein G3BP1, with Sahoo et al. (2020) focusing on axonal G3BP1.

  70. Pimentel, J. & Boccaccio, G. L. Translation and silencing in RNA granules: a tale of sand grains. Front. Mol. Neurosci. 7, 68 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Huttelmaier, S. et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).

    PubMed  Google Scholar 

  72. Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683–696 (2001).

    CAS  PubMed  Google Scholar 

  73. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004).

    CAS  PubMed  Google Scholar 

  74. Langille, J. J., Ginzberg, K. & Sossin, W. S. Polysomes identified by live imaging of nascent peptides are stalled in hippocampal and cortical neurites. Learn. Mem. 26, 351–362 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liao, Y. C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164 e120 (2019). Together with Gershoni-Emek et al. (2018) and Cioni et al. (2019), this study links axonal mRNA transport and/or translational regulation to cellular organelles.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gershoni-Emek, N. et al. Localization of RNAi machinery to axonal branch points and growth cones is facilitated by mitochondria and is disrupted in ALS. Front. Mol. Neurosci. 11, 311 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Cioni, J. M. et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176, 56–72 e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Salogiannis, J. & Reck-Peterson, S. L. Hitchhiking: a non-canonical mode of microtubule-based transport. Trends Cell Biol. 27, 141–150 (2017).

    CAS  PubMed  Google Scholar 

  79. Baumann, S., Konig, J., Koepke, J. & Feldbrugge, M. Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep. 15, 94–102 (2014).

    CAS  PubMed  Google Scholar 

  80. Bi, J., Tsai, N. P., Lu, H. Y., Loh, H. H. & Wei, L. N. Copb1-facilitated axonal transport and translation of kappa opioid-receptor mRNA. Proc. Natl Acad. Sci. USA 104, 13810–13815 (2007).

    CAS  PubMed  Google Scholar 

  81. Irion, U. & St Johnston, D. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature 445, 554–558 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wollert, T. et al. The ESCRT machinery at a glance. J. Cell Sci. 122, 2163–2166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Konopacki, F. A. et al. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol. 6, 150218 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Corradi, E. et al. Axonal precursor miRNAs hitchhike on endosomes and locally regulate the development of neural circuits. EMBO J. 39, e102513 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Scott, C. C., Vacca, F. & Gruenberg, J. Endosome maturation, transport and functions. Semin. Cell Dev. Biol. 31, 2–10 (2014).

    CAS  PubMed  Google Scholar 

  86. Rosa-Ferreira, C. & Munro, S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev. Cell 21, 1171–1178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. van Niekerk, E. A. et al. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proc. Natl Acad. Sci. USA 104, 12913–12918 (2007).

    PubMed  Google Scholar 

  90. Andrusiak, M. G. et al. Inhibition of axon regeneration by liquid-like TIAR-2 granules. Neuron 104, 290–304 (2019). Together with Sahoo et al. (Nat. Commun., 2018), this study focuses on functional roles of stress granule proteins and LLPSs for attenuation of axon regeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sahoo, P. K. et al. Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nat. Commun. 9, 3358 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Rescher, U. & Gerke, V. Annexins–unique membrane binding proteins with diverse functions. J. Cell Sci. 117, 2631–2639 (2004).

    CAS  PubMed  Google Scholar 

  93. Rotem, N. et al. ALS along the axons - expression of coding and noncoding RNA differs in axons of ALS models. Sci. Rep. 7, 44500 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Alami, N. H. et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pease-Raissi, S. E. et al. Paclitaxel reduces axonal Bclw to initiate IP3R1-dependent axon degeneration. Neuron 96, 373–386 e376 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bobylev, I. et al. Paclitaxel inhibits mRNA transport in axons. Neurobiol. Dis. 82, 321–331 (2015).

    CAS  PubMed  Google Scholar 

  97. Saal, L., Briese, M., Kneitz, S., Glinka, M. & Sendtner, M. Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation. RNA 20, 1789–1802 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cheng, X. T. et al. Revisiting LAMP1 as a marker for degradative autophagy-lysosomal organelles in the nervous system. Autophagy 14, 1472–1474 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Phay, M., Kim, H. H. & Yoo, S. Analysis of piRNA-like small non-coding RNAs present in axons of adult sensory neurons. Mol. Neurobiol. 55, 483–494 (2018).

    CAS  PubMed  Google Scholar 

  100. Aschrafi, A. et al. MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol. Life Sci. 69, 4017–4027 (2012).

    CAS  PubMed  Google Scholar 

  101. Kar, A. N., Macgibeny, M. A., Gervasi, N. M., Gioio, A. E. & Kaplan, B. B. Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J. Neurosci. 33, 7165–7174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bellon, A. et al. miR-182 regulates Slit2-mediated axon guidance by modulating the local translation of a specific mRNA. Cell Rep. 18, 1171–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, B. et al. FMRP-mediated axonal delivery of miR-181d regulates axon elongation by locally targeting Map1b and Calm1. Cell Rep. 13, 2794–2807 (2015).

    CAS  PubMed  Google Scholar 

  104. Dajas-Bailador, F. et al. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat. Neurosci. 15, 697–699 (2012).

    CAS  PubMed  Google Scholar 

  105. Hancock, M. L., Preitner, N., Quan, J. & Flanagan, J. G. MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J. Neurosci. 34, 66–78 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, Y. et al. The microRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J. Neurosci. 33, 6885–6894 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    CAS  PubMed  Google Scholar 

  108. Kim, H. H., Kim, P., Phay, M. & Yoo, S. Identification of precursor microRNAs within distal axons of sensory neuron. J. Neurochem. 134, 193–199 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sambandan, S. et al. Activity-dependent spatially localized miRNA maturation in neuronal dendrites. Science 355, 634–637 (2017).

    CAS  PubMed  Google Scholar 

  110. Court, F. A., Hendriks, W. T. J., Mac Gillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci. 28, 11024–11029 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bicker, S. et al. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. Genes Dev. 27, 991–996 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vargas, J. N. et al. Axonal localization and mitochondrial association of precursor microRNA 338. Cell Mol. Life Sci. 73, 4327–4340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pohlmann, T., Baumann, S., Haag, C., Albrecht, M. & Feldbrugge, M. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. eLife 4, e06041 (2015).

    PubMed Central  Google Scholar 

  114. Hengst, U., Cox, L. J., Macosko, E. Z. & Jaffrey, S. R. Functional and selective RNA interference in developing axons and growth cones. J. Neurosci. 26, 5727–5732 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Murashov, A. K. et al. RNAi pathway is functional in peripheral nerve axons. FASEB J. 21, 656–670 (2007).

    CAS  PubMed  Google Scholar 

  116. Gibbings, D. & Voinnet, O. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol. 20, 491–501 (2010).

    CAS  PubMed  Google Scholar 

  117. Sahoo, P. K., Smith, D. S., Perrone-Bizzozero, N. & Twiss, J. L. Axonal mRNA transport and translation at a glance. J. Cell Sci. 131, jcs196808 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Cioni, J. M., Koppers, M. & Holt, C. E. Molecular control of local translation in axon development and maintenance. Curr. Opin. Neurobiol. 51, 86–94 (2018).

    CAS  PubMed  Google Scholar 

  119. Terenzio, M., Schiavo, G. & Fainzilber, M. Compartmentalized signaling in neurons: from cell biology to neuroscience. Neuron 96, 667–679 (2017).

    CAS  PubMed  Google Scholar 

  120. Tasdemir-Yilmaz, O. E. & Segal, R. A. There and back again: coordinated transcription, translation and transport in axonal survival and regeneration. Curr. Opin. Neurobiol. 39, 62–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Piper, M. et al. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 49, 215–228 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Strohl, F. et al. Single molecule translation imaging visualizes the dynamics of local beta-actin synthesis in retinal axons. Sci. Rep. 7, 709 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Elvira, G. et al. Characterization of an RNA granule from developing brain. Mol. Cell Proteom. 5, 635–651 (2006).

    CAS  Google Scholar 

  124. Gumy, L. F. et al. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17, 85–98 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Briese, M. et al. Whole transcriptome profiling reveals the RNA content of motor axons. Nucleic Acids Res. 44, e33 (2016).

    PubMed  Google Scholar 

  126. Minis, A. et al. Subcellular transcriptomics-dissection of the mRNA composition in the axonal compartment of sensory neurons. Dev. Neurobiol. 74, 365–381 (2014).

    CAS  PubMed  Google Scholar 

  127. Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, K. et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958–971 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Martin, S. et al. Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum. J. Neurochem. 139, 349–368 (2016).

    CAS  PubMed  Google Scholar 

  131. Mili, S., Moissoglu, K. & Macara, I. G. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453, 115–119 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Preitner, N. et al. APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 158, 368–382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tcherkezian, J., Brittis, P. A., Thomas, F., Roux, P. P. & Flanagan, J. G. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141, 632–644 (2010). Together with Koppers et al. (2019), this study provides evidence for axon guidance cue receptors storing axonal mRNAs, with ligand binding by the receptor providing an ‘on demand’ cue for translation of the stored mRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Koppers, M. et al. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 8, e48718 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Gioio, A. E. et al. Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal. J. Neurosci. Res. 64, 447–453 (2001).

    CAS  PubMed  Google Scholar 

  136. Aschrafi, A., Natera-Naranjo, O., Gioio, A. E. & Kaplan, B. B. Regulation of axonal trafficking of cytochrome c oxidase IV mRNA. Mol. Cell Neurosci. 43, 422–430 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hillefors, M., Gioio, A., Mameza, M. & Kaplan, B. Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons. Cell Mol. Neurobiol. 27, 701–716 (2007).

    CAS  PubMed  Google Scholar 

  138. Kar, A. N. et al. Dysregulation of the axonal trafficking of nuclear-encoded mitochondrial mRNA alters neuronal mitochondrial activity and mouse behavior. Dev. Neurobiol. 74, 333–350 (2014).

    CAS  PubMed  Google Scholar 

  139. Yoon, B. C. et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148, 752–764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Villegas, R. et al. Calcium release from intra-axonal endoplasmic reticulum leads to axon degeneration through mitochondrial dysfunction. J. Neurosci. 34, 7179–7189 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Spillane, M., Ketschek, A., Merianda, T. T., Twiss, J. L. & Gallo, G. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 5, 1564–1575 (2013). Together with Rangaraju et al. (2019) and Spillane et al. (2012), this study shows that mitochondria provide a platform for localized translation, with mitochondrial function and intra-axonal translation required for neurotrophin-dependent axon branching.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176, 73–84 e15 (2019).

    CAS  PubMed  Google Scholar 

  143. Spillane, M. et al. Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. J. Neurosci. 32, 17671–17689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Vuppalanchi, D. et al. Lysophosphatidic acid differentially regulates axonal mRNA translation through 5′UTR elements. Mol. Cell Neurosci. 50, 136–146 (2012). Together with Pacheco et al. (2020), Ying et al. (2015), Onate et al. (2016) and Cagnetta et al. (2019), this study provides evidence for a role of ER stress-associated signalling pathways in regulating specificity of intra-axonal mRNA translation.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Pacheco, A., Merianda, T. T., Twiss, J. L. & Gallo, G. Mechanism and role of the intra-axonal calreticulin translation in response to axonal injury. Exp. Neurol. 323, 113072 (2020).

    CAS  PubMed  Google Scholar 

  146. Malhotra, J. D. & Kaufman, R. J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716–731 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ying, Z. et al. The unfolded protein response and cholesterol biosynthesis link Luman/CREB3 to regenerative axon growth in sensory neurons. J. Neurosci. 35, 14557–14570 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Onate, M. et al. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury. Sci. Rep. 6, 21709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cagnetta, R. et al. Noncanonical modulation of the eIF2 pathway controls an increase in local translation during neural wiring. Mol. Cell 73, 474–489 e475 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Vuppalanchi, D. et al. Conserved 3′-untranslated region sequences direct subcellular localization of chaperone protein mRNAs in neurons. J. Biol. Chem. 285, 18025–18038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gal, J. et al. The acetylation of Lysine-376 of G3BP1 regulates RNA binding and stress granule dynamics. Mol. Cell Biol. 39, e00052–00019 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kalinski, A. L. et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J. Cell Biol. 218, 1871–1890 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Bassell, G. J. et al. Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wells, D. G. RNA-binding proteins: a lesson in repression. J. Neurosci. 26, 7135–7138 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Elkin, S. R., Lakoduk, A. M. & Schmid, S. L. Endocytic pathways and endosomal trafficking: a primer. Wien. Med. Wochenschr. 166, 196–204 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Schmid, M., Jaedicke, A., Du, T. G. & Jansen, R. P. Coordination of endoplasmic reticulum and mRNA localization to the yeast bud. Curr. Biol. 16, 1538–1543 (2006).

    CAS  PubMed  Google Scholar 

  157. Aronov, S. et al. mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol. Cell Biol. 27, 3441–3455 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Genz, C., Fundakowski, J., Hermesh, O., Schmid, M. & Jansen, R. P. Association of the yeast RNA-binding protein She2p with the tubular endoplasmic reticulum depends on membrane curvature. J. Biol. Chem. 288, 32384–32393 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Darzacq, X., Powrie, E., Gu, W., Singer, R. H. & Zenklusen, D. RNA asymmetric distribution and daughter/mother differentiation in yeast. Curr. Opin. Microbiol. 6, 614–620 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Trautwein, M., Dengjel, J., Schirle, M. & Spang, A. Arf1p provides an unexpected link between COPI vesicles and mRNA in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 5021–5037 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Zander, S., Baumann, S., Weidtkamp-Peters, S. & Feldbrugge, M. Endosomal assembly and transport of heteromeric septin complexes promote septin cytoskeleton formation. J. Cell Sci. 129, 2778–2792 (2016).

    CAS  PubMed  Google Scholar 

  162. Tian, L. et al. Zipcode RNA-binding proteins and membrane trafficking proteins cooperate to transport glutelin mRNAs in rice endosperm. Plant Cell 32, 2566–2581 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hoffman, A. M., Chen, Q., Zheng, T. & Nicchitta, C. V. Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis. J. Biol. Chem. 294, 8942–8958 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Steward, O. Alterations in polysomes associated with dendritic spines during the reinnervation of the dentate gyrus of the adult rat. J. Neurosci. 3, 177–188 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Biever, A. et al. Monosomes actively translate synaptic mRNAs in neuronal processes. Science 367, eaay4991 (2020).

    CAS  PubMed  Google Scholar 

  166. Ostroff, L. E. et al. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amygdala. eLife 8, e51607 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hafner, A. S., Donlin-Asp, P. G., Leitch, B., Herzog, E. & Schuman, E. M. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364, eaau3644 (2019).

    CAS  PubMed  Google Scholar 

  168. Poulopoulos, A. et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 565, 356–360 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Shigeoka, T. et al. Dynamic axonal translation in developing and mature visual circuits. Cell 166, 181–192 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Pannese, E. & Ledda, M. Ribosomes in myelinated axons of the rabbit spinal ganglion neurons. J. Submicrosc. Cytol. Pathol. 23, 33–38 (1991).

    CAS  PubMed  Google Scholar 

  171. Court, F. A. et al. Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia 59, 1529–1539 (2011).

    PubMed  Google Scholar 

  172. Muller, K. et al. A predominantly glial origin of axonal ribosomes after nerve injury. Glia 66, 1591–1610 (2018).

    PubMed  Google Scholar 

  173. Canclini, L. et al. Association of microtubules and axonal RNA transferred from myelinating Schwann cells in rat sciatic nerve. PLoS ONE 15, e0233651 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lopez-Leal, R. et al. Schwann cell reprogramming into repair cells increases exosome-loaded miRNA-21 promoting axonal growth. J. Cell Sci. 133, jcs239004 (2020).

    CAS  PubMed  Google Scholar 

  175. Haimovich, G. et al. Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proc. Natl Acad. Sci. USA 114, E9873–E9882 (2017).

    CAS  PubMed  Google Scholar 

  176. Dinman, J. D. The eukaryotic ribosome: current status and challenges. J. Biol. Chem. 284, 11761–11765 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Segev, N. & Gerst, J. E. Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. J. Cell Biol. 217, 117–126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Shigeoka, T. et al. On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. Cell Rep. 29, 3605–3619 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Costa, R. O. et al. Synaptogenesis stimulates a proteasome-mediated ribosome reduction in axons. Cell Rep. 28, 864–876 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the following funding sources for work related to the topic of this Review: US National Institutes of Health (R01-NS089633 and R01-NS041596 to J.L.T.; K01-NS105879 to T.P.S.), US National Science Foundation (MCB-1020970 to J.L.T.), Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to J.L.T), South Carolina Spinal Cord Injury Research Fund (2019-PD-02 to P.K.S.), South Carolina EPSCoR Stimulus Research Program (18-SR04 to J.L.T.) and the University of South Carolina Research Office ASPIRE programme (to J.L.T. and A.N.K.). J.L.T. is the incumbent SmartState Chair of Childhood Neurotherapeutics at the University of South Carolina.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors made substantial contributions to the discussion of the content of the article. I.D.C., C.N.B., M.Z. and J.L.T. researched data for the article. I.D.C., C.N.B., M.Z., J.L.T. and P.K.S. wrote the article. I.D.C., C.N.B., J.L.T., P.K.S., T.P.S., E.T. and A.N.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jeffery L. Twiss.

Ethics declarations

Competing interests

J,L.T. and P.K.S. have a US Patent for G3BP1 as a target for accelerating axon regeneration (US Patent 10,668,128). A.N.K., P.K.S. and J.L.T. have applied for a US patent for G3BP1 as a target for preventing neurodegeneration.

Additional information

Peer review information

Nature Reviews Neuroscience thanks G. Bassell, U. Hengst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ribosomes

RNA–protein complexes composed of 60S and 40S subunits that are responsible for translating mRNAs into protein.

RNA profiling

The measurement of the identities and abundances of RNAs across different cell or tissue populations or subcellular sites and in different physiological conditions or growth states.

RNA-binding proteins

(RBPs). Proteins that can bind RNA via RNA structures (‘motifs’) and that are involved in RNA processing, trafficking, stability and translational regulation.

Ribonucleoproteins

(RNPs). Complexes of RNA-binding proteins and RNAs that associate, often in the form of a granule or organelle-like structures.

Motor proteins

Proteins that bind to microtubules or microfilaments and transport cargos from one site in a cell to another.

Nuclear pore complex

A protein complex that transects the nuclear membrane and controls the exchange of many components between the nucleus and the cytoplasm.

Nonsense-mediated decay

A mechanism for the selective degradation of mRNAs that contain premature stop codons within, or have exon–exon junctions within, their 3′ untranslated regions.

Interactomes

Sets of molecular interactions; for example, an RNA-binding protein has both an ‘RNA interactome’ and a ‘protein interactome’ that define the macromolecules that it interacts with.

Adaptor proteins

Proteins containing specific protein-binding sites that facilitate interactions between protein binding partners (for example, proteins linking cargos to motor proteins).

Transport granule

An RNA-protein complex, or ribonucleoprotein, that is needed for transport of mRNAs to subcellular sites.

Liquid–liquid phase separation

(LLPS). A process in which solutions of macromolecules (proteins and nucleic acids) transition to form a membraneless phase-separated cytoplasmic condensate.

Polysome

A complex of multiple ribosomes bound to an mRNA that is typically regarded as a site of active translation.

Unfolded protein response

A molecular response that occurs when levels of unfolded proteins increase in the endoplasmic reticulum; this reduces overall protein synthesis to decrease continued load of unfolded proteins and allows the cell to respond to different types of stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalla Costa, I., Buchanan, C.N., Zdradzinski, M.D. et al. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 22, 77–91 (2021). https://doi.org/10.1038/s41583-020-00407-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-00407-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing