Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

A contextual binding theory of episodic memory: systems consolidation reconsidered

Abstract

Episodic memory reflects the ability to recollect the temporal and spatial context of past experiences. Episodic memories depend on the hippocampus but have been proposed to undergo rapid forgetting unless consolidated during offline periods such as sleep to neocortical areas for long-term storage. Here, we propose an alternative to this standard systems consolidation theory (SSCT) — a contextual binding account — in which the hippocampus binds item-related and context-related information. We compare these accounts in light of behavioural, lesion, neuroimaging and sleep studies of episodic memory and contend that forgetting is largely due to contextual interference, episodic memory remains dependent on the hippocampus across time, contextual drift produces post-encoding activity and sleep benefits memory by reducing contextual interference.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Results that have historically been taken as evidence in support of systems consolidation theory.

Similar content being viewed by others

References

  1. Ribot, T. Diseases of Memory: an Essay in the Positive Psychology Vol. 43 (D. Appleton & Company, NY,1882).

  2. Müller, G. E. & Pilzecker, A. Experimentelle Beiträge zur Lehre vom Gedächtniss [German] Vol. 1 (J. A. Barth, Leipzig, 1900).

  3. Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    CAS  PubMed  Google Scholar 

  4. Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004).

    PubMed  Google Scholar 

  5. Bekinschtein, P. et al. Persistence of long-term memory storage: new insights into its molecular signatures in the hippocampus and related structures. Neurotox. Res. 18, 377–385 (2010).

    CAS  PubMed  Google Scholar 

  6. Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    CAS  PubMed  Google Scholar 

  7. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).

    CAS  Google Scholar 

  8. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Google Scholar 

  9. Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).

    CAS  PubMed  Google Scholar 

  10. Squire, L. R., Genzel, L., Wixted, J. T. & Morris, R. G. Memory consolidation. Cold Spring Harb. Perspect. Biol. 7, a021766 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    CAS  PubMed  Google Scholar 

  12. Lewandowsky, S., Ecker, U. K. H., Farrell, S. & Brown, G. D. A. Models of cognition and constraints from neuroscience: a case study involving consolidation. Aust. J. Psychol. 64, 37–45 (2012).

    Google Scholar 

  13. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997).

    CAS  PubMed  Google Scholar 

  14. Sutherland, R. J. & Lehmann, H. Alternative conceptions of memory consolidation and the role of the hippocampus at the systems level in rodents. Curr. Opin. Neurobiol. 21, 446–451 (2011).

    CAS  PubMed  Google Scholar 

  15. Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fortin, N. J., Wright, S. P. & Eichenbaum, H. Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431, 188 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R. S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–190 (2006).

    CAS  PubMed  Google Scholar 

  18. Norman, K. A. & O’Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev. 110, 611–646 (2003).

    PubMed  Google Scholar 

  19. Yonelinas, A. P. Components of episodic memory: the contribution of recollection and familiarity. Phil. Trans. R. Soc. Lond. B 356, 1363–1374 (2001).

    CAS  Google Scholar 

  20. Bower, G. H. in Coding Processes in Human Memory (eds. Merton, A. W. & Martin, E.) 85–123 (V. H. Winston & Sons, 1972).

  21. Estes, W. K. Statistical theory of spontaneous recovery and regression. Psychol. Rev. 62, 145–154 (1955).

    CAS  PubMed  Google Scholar 

  22. Kahana, M. J., Howard, M. W., Zaromb, F. & Wingfield, A. Age dissociates recency and lag recency effects in free recall. J. Exp. Psychol. Learn. Mem. Cogn. 28, 530–540 (2002).

    PubMed  Google Scholar 

  23. Mensink, G. M. & Raaijmakers, J. G. W. A model for contextual fluctuation. J. Math. Psychol. 33, 172–186 (1989).

    Google Scholar 

  24. Polyn, S. M., Norman, K. A. & Kahana, M. J. A context maintenance and retrieval model of organizational processes in free recall. Psychol. Rev. 116, 129–156 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Sekeres, M. J., Winocur, G. & Moscovitch, M. The hippocampus and related neocortical structures in memory transformation. Neurosci. Lett. 680, 39–53 (2018).

    CAS  PubMed  Google Scholar 

  26. Dewar, M., Alber, J., Cowan, N. & Della Sala, S. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient. PLOS ONE 9, e109542 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Dewar, M. T., Cowan, N. & Sala, S. D. Forgetting due to retroactive interference: a fusion of Muller and Pilzecker’s (1900) early insights into everyday forgetting and recent research on anterograde amnesia. Cortex 43, 616–634 (2007).

    PubMed  PubMed Central  Google Scholar 

  28. Lechner, H. A., Squire, L. R. & Byrne, J. H. 100 years of consolidation — remembering Müller and Pilzecker. Learn. Mem. 6, 77–87 (1999).

    CAS  PubMed  Google Scholar 

  29. Postman, L. & Keppel, G. Conditions of cumulative proactive-inhibition. J. Exp. Psychol. Gen. 106, 376–403 (1977).

    Google Scholar 

  30. Watkins, O. C. & Watkins, M. J. Buildup of proactive inhibition as a cue-overload effect. J. Exp. Psychol. Hum. Learn. 1, 442–452 (1975).

    Google Scholar 

  31. Dallett, K. & Wilcox, G. S. Contextuall stimui and proactive inhibition. J. Exp. Psychol. 78, 475–480 (1968).

    Google Scholar 

  32. McGeoch, J. A. & McDonald, W. T. Meaningful relation and retroactive inhibition. Am. J. Psychol. 43, 579–588 (1931).

    Google Scholar 

  33. Melton, A. W. & von Lackum, W. J. Retroactive and proactive inhibition in retention: Evidence for a two-factor theory of retroactive inhibition. Am. J. Psychol. 54, 157–173 (1941).

    Google Scholar 

  34. Bilodeau, I. M. & Schlosberg, H. Similarity in stimulating conditions as a variable in retroactive inhibition. J. Exp. Psychol. 41, 199–204 (1951).

    CAS  PubMed  Google Scholar 

  35. Greenspoon, J. & Ranyard, R. Stimulus conditions and retroactive inhibition. J. Exp. Psychol. 53, 55–59 (1957).

    CAS  PubMed  Google Scholar 

  36. Strand, B. Z. Change of context and retroactive inhibition. J. Verbal Learning Verbal Behav. 9, 202–206 (1970).

    Google Scholar 

  37. Godden, D. R. & Baddeley, A. D. Context-dependent memory in two natural environments — on land and underwater. Br. J. Psychol. 66, 325–331 (1975).

    Google Scholar 

  38. Tulving, E. & Thomson, D. M. Word-blindness in episodic memory. Psychon. Sci. 29, 262 (1972).

    Google Scholar 

  39. Gardiner, J. M., Craik, F. I. & Birtwistle, J. Retrieval cues and release from proactive inhibition. J. Verbal Learning Verbal Behav. 11, 778–783 (1972).

    Google Scholar 

  40. Kroll, N. E. A., Ogawa, K. H. & Nieters, J. E. Eyewitness memory and the importance of sequential information. Bull. Psychon. Soc. 26, 395–398 (1988).

    Google Scholar 

  41. Kahana, M. J. Associative retrieval processes in free recall. Mem. Cognit. 24, 103–109 (1996).

    CAS  PubMed  Google Scholar 

  42. Schwartz, G., Howard, M. W., Jing, B. & Kahana, M. J. Shadows of the past: temporal retrieval effects in recognition memory. Psychol. Sci. 16, 898–904 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. Howard, M. W., Youker, T. E. & Venkatadass, V. S. The persistence of memory: contiguity effects across hundreds of seconds. Psychon. Bull. Rev. 15, 58–63 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Folkerts, S., Rutishauser, U. & Howard, M. W. Human episodic memory retrieval is accompanied by a neural contiguity effect. J. Neurosci. 3, 2312–2317 (2018).

    Google Scholar 

  45. Howard, M. W., Viskontas, I. V., Shankar, K. H. & Fried, I. Ensembles of human MTL neurons “jump back in time” in response to a repeated stimulus. Hippocampus 22, 1833–1847 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Manning, J. R., Polyn, S. M., Baltuch, G. H., Litt, B. & Kahana, M. J. Oscillatory patterns in temporal lobe reveal context reinstatement during memory search. Proc. Natl Acad. Sci. USA 108, 12893–12897 (2011).

    CAS  PubMed  Google Scholar 

  47. Palombo, D. J., Di Lascio, J. M., Howard, M. W. & Verfaellie, M. Medial temporal lobe amnesia is associated with a deficit in recoveing temporal context. J. Cogn. Neurosci. 31, 236–248 (2019).

    PubMed  Google Scholar 

  48. Yaffe, R. B. et al. Reinstatement of distributed cortical oscillations occurs with precise spatiotemporal dynamics during successful memory retrieval. Proc. Natl Acad. Sci. USA 111, 18727–18732 (2014).

    CAS  PubMed  Google Scholar 

  49. Radvansky, G. A. & Zacks, J. M. Event boundaries in memory and cognition. Curr. Opin. Behav. Sci. 17, 133–140 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Sederberg, P. B., Gershman, S. J., Polyn, S. M. & Norman, K. A. Human memory reconsolidation can be explained using the temporal context model. Psychon. Bull. Rev. 18, 455–468 (2011).

    PubMed  PubMed Central  Google Scholar 

  51. Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J. & Madsen, J. R. Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 23, 10809–10814 (2003).

    CAS  PubMed  Google Scholar 

  52. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    CAS  PubMed  Google Scholar 

  53. Squire, L. R., Slater, P. C. & Chace, P. M. Retrograde amnesia: temporal gradient in very long term memory following electroconvulsive therapy. Science 187, 77–79 (1975).

    CAS  PubMed  Google Scholar 

  54. Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).

    CAS  PubMed  Google Scholar 

  55. Corkin, S. Lasting consequences of bilateral medial temporal lobectomy — clinical course and experimental findings in H.M. Semin. Neurol. 4, 249–259 (1984).

    Google Scholar 

  56. Penfield, W. & Milner, B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch. Neurol. Psychiatry 79, 475–497 (1958).

    CAS  PubMed  Google Scholar 

  57. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Steinvorth, S., Levine, B. & Corkin, S. Medial temporal lobe structures are needed to re-experience remote autobiographical memories: evidence from H.M. and W.R. Neuropsychologia 43, 479–496 (2005).

    PubMed  Google Scholar 

  59. Rempel-Clower, N. L., Zola, S. M., Squire, L. R. & Amaral, D. G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).

    CAS  PubMed  Google Scholar 

  60. Bayley, P. J., Hopkins, R. O. & Squire, L. R. The fate of old memories after medial temporal lobe damage. J. Neurosci. 26, 13311–13317 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Addis, D. R., Moscovitch, M., Crawley, A. P. & McAndrews, M. P. Recollective qualities modulate hippocampal activation during autobiographical memory retrieval. Hippocampus 14, 752–762 (2004).

    PubMed  Google Scholar 

  62. Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J. & Moscovitch, M. Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cereb. Cortex 14, 1214–1225 (2004).

    PubMed  Google Scholar 

  63. Sheldon, S. & Levine, B. Same as it ever was: vividness modulates the similarities and differences between the neural networks that support retrieving remote and recent autobiographical memories. Neuroimage 83, 880–891 (2013).

    PubMed  Google Scholar 

  64. Viard, A. et al. Hippocampal activation for autobiographical memories over the entire lifetime in healthy aged subjects: an fMRI study. Cereb. Cortex 17, 2453–2467 (2007).

    PubMed  PubMed Central  Google Scholar 

  65. Cabeza, R. & St Jacques, P. Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11, 219–227 (2007).

    PubMed  Google Scholar 

  66. Dede, A. J. & Smith, C. N. The functional and structural neuroanatomy of systems consolidation for autobiographical and semantic memory. Curr. Top. Behav. Neurosci. 37, 119–150 (2016).

    Google Scholar 

  67. Nieuwenhuis, I. L. & Takashima, A. The role of the ventromedial prefrontal cortex in memory consolidation. Behav. Brain Res. 218, 325–334 (2011).

    PubMed  Google Scholar 

  68. Schnider, A. The Confabulating Mind: How the Brain Creates Reality (Oxford Univ. Press, 2008).

  69. Philippi, C. L., Duff, M. C., Denburg, N. L., Tranel, D. & Rudrauf, D. Medial PFC damage abolishes the self-reference effect. J. Cogn. Neurosci. 24, 475–481 (2012).

    PubMed  Google Scholar 

  70. Gilboa, A. & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017).

    PubMed  Google Scholar 

  71. Bertossi, E., Tesini, C., Cappelli, A. & Ciaramelli, E. Ventromedial prefrontal damage causes a pervasive impairment of episodic memory and future thinking. Neuropsychologia 90, 12–24 (2016).

    PubMed  Google Scholar 

  72. Barry, D. N., Coogan, A. N. & Commins, S. The time course of systems consolidation of spatial memory from recent to remote retention: a comparison of the immediate early genes Zif268, c-Fos and Arc. Neurobiol. Learn. Mem. 128, 46–55 (2016).

    CAS  PubMed  Google Scholar 

  73. Bolhuis, J. J., Stewart, C. A. & Forrest, E. M. Retrograde amnesia and memory reactivation in rats with ibotenate lesions to the hippocampus or subiculum. Q. J. Exp. Psychol. B 47, 129–150 (1994).

    CAS  PubMed  Google Scholar 

  74. Clark, R. E., Broadbent, N. J. & Squire, L. R. Impaired remote spatial memory after hippocampal lesions despite extensive training beginning early in life. Hippocampus 15, 340–346 (2005).

    PubMed  PubMed Central  Google Scholar 

  75. Clark, R. E., Broadbent, N. J. & Squire, L. R. Hippocampus and remote spatial memory in rats. Hippocampus 15, 260–272 (2005).

    PubMed  PubMed Central  Google Scholar 

  76. Clark, R. E., Broadbent, N. J. & Squire, L. R. The hippocampus and spatial memory: findings with a novel modification of the water maze. J. Neurosci. 27, 6647–6654 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hollup, S. A., Kjelstrup, K. G., Hoff, J., Moser, M. B. & Moser, E. I. Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. J. Neurosci. 21, 4505–4513 (2001).

    CAS  PubMed  Google Scholar 

  78. Martin, S. J., de Hoz, L. & Morris, R. G. Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding. Neuropsychologia 43, 609–624 (2005).

    PubMed  Google Scholar 

  79. Mumby, D. G., Astur, R. S., Weisend, M. P. & Sutherland, R. J. Retrograde amnesia and selective damage to the hippocampal formation: memory for places and object discriminations. Behav. Brain Res. 106, 97–107 (1999).

    CAS  PubMed  Google Scholar 

  80. Ocampo, A. C., Squire, L. R. & Clark, R. E. Hippocampal area CA1 and remote memory in rats. Learn. Mem. 24, 563–568 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sutherland, R. J. et al. Retrograde amnesia after hippocampal damage: recent versus remote memories in two tasks. Hippocampus 11, 27–42 (2001).

    CAS  PubMed  Google Scholar 

  82. Winocur, G., Moscovitch, M., Caruana, D. A. & Binns, M. A. Retrograde amnesia in rats with lesions to the hippocampus on a test of spatial memory. Neuropsychologia 43, 1580–1590 (2005).

    PubMed  Google Scholar 

  83. Bonaccorsi, J. et al. System consolidation of spatial memories in mice: effects of enriched environment. Neural Plast. 2013, 956312 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Kee, N., Teixeira, C. M., Wang, A. H. & Frankland, P. W. Imaging activation of adult-generated granule cells in spatial memory. Nat. Protoc. 2, 3033–3044 (2007).

    CAS  PubMed  Google Scholar 

  85. Lopez, J. et al. Context-dependent modulation of hippocampal and cortical recruitment during remote spatial memory retrieval. Hippocampus 22, 827–841 (2012).

    PubMed  Google Scholar 

  86. Teixeira, C. M., Pomedli, S. R., Maei, H. R., Kee, N. & Frankland, P. W. Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J. Neurosci. 26, 7555–7564 (2006).

    PubMed  Google Scholar 

  87. Broadbent, N. J. & Clark, R. E. Remote context fear conditioning remains hippocampus-dependent irrespective of training protocol, training-surgery interval, lesion size, and lesion method. Neurobiol. Learn. Mem. 106, 300–308 (2013).

    PubMed  Google Scholar 

  88. Goshen, I. et al. Dynamics of retrieval strategies for remote memories. Cell 147, 678–689 (2011).

    CAS  PubMed  Google Scholar 

  89. Lehmann, H., Lacanilao, S. & Sutherland, R. J. Complete or partial hippocampal damage produces equivalent retrograde amnesia for remote contextual fear memories. Eur. J. Neurosci. 25, 1278–1286 (2007).

    PubMed  Google Scholar 

  90. Lehmann, H., Rourke, B. K., Booker, A. & Glenn, M. J. Single session contextual fear conditioning remains dependent on the hippocampus despite an increase in the number of context–shock pairings during learning. Neurobiol. Learn. Mem. 106, 294–299 (2013).

    PubMed  Google Scholar 

  91. Quinn, J. J., Ma, Q. D., Tinsley, M. R., Koch, C. & Fanselow, M. S. Inverse temporal contributions of the dorsal hippocampus and medial prefrontal cortex to the expression of long-term fear memories. Learn. Mem. 15, 368–372 (2008).

    PubMed  PubMed Central  Google Scholar 

  92. Sparks, F. T., Spanswick, S. C., Lehmann, H. & Sutherland, R. J. Neither time nor number of context-shock pairings affect long-term dependence of memory on hippocampus. Neurobiol. Learn. Mem. 106, 309–315 (2013).

    CAS  PubMed  Google Scholar 

  93. Sutherland, R. J., O’Brien, J. & Lehmann, H. Absence of systems consolidation of fear memories after dorsal, ventral, or complete hippocampal damage. Hippocampus 18, 710–718 (2008).

    PubMed  Google Scholar 

  94. Lehmann, H. et al. Making context memories independent of the hippocampus. Learn. Mem. 16, 417–420 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Anagnostaras, S. G., Maren, S. & Fanselow, M. S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106–1114 (1999).

    CAS  PubMed  Google Scholar 

  96. Corcoran, K. A. et al. NMDA receptors in retrosplenial cortex are necessary for retrieval of recent and remote context fear memory. J. Neurosci. 31, 11655–11659 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Frankland, P. W. et al. Stability of recent and remote contextual fear memory. Learn. Mem. 13, 451–457 (2006).

    PubMed  PubMed Central  Google Scholar 

  98. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    CAS  PubMed  Google Scholar 

  99. Kitamura, T. et al. Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139, 814–827 (2009).

    CAS  PubMed  Google Scholar 

  100. Maren, S., Aharonov, G. & Fanselow, M. S. Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav. Brain Res. 88, 261–274 (1997).

    CAS  PubMed  Google Scholar 

  101. Wang, S. H., Teixeira, C. M., Wheeler, A. L. & Frankland, P. W. The precision of remote context memories does not require the hippocampus. Nat. Neurosci. 12, 253–255 (2009).

    PubMed  Google Scholar 

  102. Wiltgen, B. J. et al. The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr. Biol. 20, 1336–1344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Winocur, G., Frankland, P. W., Sekeres, M., Fogel, S. & Moscovitch, M. Changes in context-specificity during memory reconsolidation: selective effects of hippocampal lesions. Learn. Mem. 16, 722–729 (2009).

    PubMed  Google Scholar 

  104. Winocur, G., Sekeres, M. J., Binns, M. A. & Moscovitch, M. Hippocampal lesions produce both nongraded and temporally graded retrograde amnesia in the same rat. Hippocampus 23, 330–341 (2013).

    PubMed  Google Scholar 

  105. Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L. & Silva, A. J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004).

    CAS  PubMed  Google Scholar 

  106. Lux, V., Atucha, E., Kitsukawa, T. & Sauvage, M. M. Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval. eLife 5, e11862 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Tayler, K. K., Tanaka, K. Z., Reijmers, L. G. & Wiltgen, B. J. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23, 99–106 (2013).

    CAS  PubMed  Google Scholar 

  108. Guo, N. et al. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat. Med. 24, 438–449 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jenkins, J. G. & Dallenbach, K. M. Oblivescence during sleep and waking. Am. J. Psychol. 35, 605–612 (1924).

    Google Scholar 

  110. Rasch, B. & Born, J. About sleep’s role in memory. Physiol. Rev. 93, 681–766 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Luthi, A. Sleep spindles: where they come from, what they do. Neuroscientist 20, 243–256 (2014).

    PubMed  Google Scholar 

  112. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Buzsaki, G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989).

    CAS  PubMed  Google Scholar 

  114. Lewis, P. A., Cairney, S., Manning, L. & Critchley, H. D. The impact of overnight consolidation upon memory for emotional and neutral encoding contexts. Neuropsychologia 49, 2619–2629 (2011).

    CAS  PubMed  Google Scholar 

  115. Plihal, W. & Born, J. Effects of early and late nocturnal sleep on declarative and procedural memory. J. Cogn. Neurosci. 9, 534–547 (1997).

    CAS  PubMed  Google Scholar 

  116. Studte, S., Bridger, E. & Mecklinger, A. Nap sleep preserves associative but not item memory performance. Neurobiol. Learn. Mem. 120, 84–93 (2015).

    PubMed  Google Scholar 

  117. Talamini, L. M., Nieuwenhuis, I. L., Takashima, A. & Jensen, O. Sleep directly following learning benefits consolidation of spatial associative memory. Learn. Mem. 15, 233–237 (2008).

    PubMed  Google Scholar 

  118. van der Helm, E., Gujar, N., Nishida, M. & Walker, M. P. Sleep-dependent facilitation of episodic memory details. PLOS ONE 6, e27421 (2011).

    PubMed  PubMed Central  Google Scholar 

  119. Mawdsley, M., Grasby, K. & Talk, A. The effect of sleep on item recognition and source memory recollection among shift-workers and permanent day-workers. J. Sleep Res. 23, 538–544 (2014).

    PubMed  Google Scholar 

  120. Schonauer, M., Pawlizki, A., Kock, C. & Gais, S. Exploring the effect of sleep and reduced interference on different forms of declarative memory. Sleep 37, 1995–2007 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Sawangjit, A. et al. The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature 564, 109–113 (2018).

    CAS  PubMed  Google Scholar 

  122. Atienza, M. & Cantero, J. L. Modulatory effects of emotion and sleep on recollection and familiarity. J. Sleep Res. 17, 285–294 (2008).

    PubMed  Google Scholar 

  123. Daurat, A., Terrier, P., Foret, J. & Tiberge, M. Slow wave sleep and recollection in recognition memory. Conscious Cogn. 16, 445–455 (2007).

    PubMed  Google Scholar 

  124. Drosopoulos, S., Wagner, U. & Born, J. Sleep enhances explicit recollection in recognition memory. Learn. Mem. 12, 44–51 (2005).

    PubMed  PubMed Central  Google Scholar 

  125. Sterpenich, V. et al. Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLOS Biol. 5, e282 (2007).

    PubMed  PubMed Central  Google Scholar 

  126. Bergmann, T. O., Molle, M., Diedrichs, J., Born, J. & Siebner, H. R. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage 59, 2733–2742 (2012).

    PubMed  Google Scholar 

  127. Deuker, L. et al. Memory consolidation by replay of stimulus-specific neural activity. J. Neurosci. 33, 19373–19383 (2013).

    CAS  PubMed  Google Scholar 

  128. Peigneux, P. et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44, 535–545 (2004).

    CAS  PubMed  Google Scholar 

  129. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    CAS  PubMed  Google Scholar 

  130. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    CAS  PubMed  Google Scholar 

  131. Staresina, B. P., Alink, A., Kriegeskorte, N. & Henson, R. N. Awake reactivation predicts memory in humans. Proc. Natl Acad. Sci. USA 110, 21159–21164 (2013).

    CAS  PubMed  Google Scholar 

  132. Tambini, A. & Davachi, L. Persistence of hippocampal multivoxel patterns into postencoding rest is related to memory. Proc. Natl Acad. Sci. USA 110, 19591–19596 (2013).

    CAS  PubMed  Google Scholar 

  133. Tambini, A., Ketz, N. & Davachi, L. Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65, 280–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tompary, A., Duncan, K. & Davachi, L. Consolidation of associative and item memory is related to post-encoding functional connectivity between the ventral tegmental area and different medial temporal lobe subregions during an unrelated task. J. Neurosci. 35, 7326–7331 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    CAS  PubMed  Google Scholar 

  136. Giri, B., Miyawaki, H., Mizuseki, K., Cheng, S. & Diba, K. Hippocampal reactivation extends for several hours following novel experience. J. Neurosci. 39, 866–875 (2019).

    CAS  PubMed  Google Scholar 

  137. Crestani, A. P. et al. Metaplasticity contributes to memory formation in the hippocampus. Neuropsychopharmacology 44, 408–414 (2019).

    CAS  PubMed  Google Scholar 

  138. Moyer, J. R. Jr., Power, J. M., Thompson, L. T. & Disterhoft, J. F. Increased excitability of aged rabbit CA1 neurons after trace eyeblink conditioning. J. Neurosci. 20, 5476–5482 (2000).

    CAS  PubMed  Google Scholar 

  139. Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    CAS  PubMed  Google Scholar 

  141. Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Manning, J. R. et al. A neural signature of contextually mediated intentional forgetting. Psychon. Bull. Rev. 23, 1534–1542 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C. & Norman, K. A. Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nat. Commun. 9, 3920–3931 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Gruber, M. J., Ritchey, M., Wang, S. F., Doss, M. K. & Ranganath, C. Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron 89, 1110–1120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Murty, V. P., Tompary, A., Adcock, R. A. & Davachi, L. Selectivity in postencoding connectivity with high-level visual cortex is associated with reward-motivated memory. J. Neurosci. 37, 537–545 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsaki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    CAS  PubMed  Google Scholar 

  147. Paller, K. A. Sleeping in a brave new world: opportunities for improving learning and clinical outcomes through targeted memory reactivation. Curr. Dir. Psychol. Sci. 26, 532–537 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Schouten, D. I., Pereira, S. I., Tops, M. & Louzada, F. M. State of the art on targeted memory reactivation: sleep your way to enhanced cognition. Sleep Med. Rev. 32, 123–131 (2017).

    PubMed  Google Scholar 

  149. Diekelmann, S., Buchel, C., Born, J. & Rasch, B. Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat. Neurosci. 14, 381–386 (2011).

    CAS  PubMed  Google Scholar 

  150. Rasch, B., Buchel, C., Gais, S. & Born, J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315, 1426–1429 (2007).

    CAS  PubMed  Google Scholar 

  151. Rihm, J. S., Diekelmann, S., Born, J. & Rasch, B. Reactivating memories during sleep by odors: odor specificity and associated changes in sleep oscillations. J. Cogn. Neurosci. 26, 1806–1818 (2014).

    PubMed  Google Scholar 

  152. Schreiner, T. & Rasch, B. Boosting vocabulary learning by verbal cueing during sleep. Cereb. Cortex 25, 4169–4179 (2015).

    PubMed  Google Scholar 

  153. Cairney, S. A., Lindsay, S., Sobczak, J. M., Paller, K. A. & Gaskell, M. G. The benefits of targeted memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue–memory associations. Sleep 39, 1139–1150 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. Donohue, K. C. & Spencer, R. M. Continuous re-exposure to environmental sound cues during sleep does not improve memory for semantically unrelated word pairs. J. Cogn. Educ. Psychol. 10, 167–177 (2011).

    PubMed  PubMed Central  Google Scholar 

  155. Rudoy, J. D., Voss, J. L., Westerberg, C. E. & Paller, K. A. Strengthening individual memories by reactivating them during sleep. Science 326, 1079 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Tucker, M. A. & Fishbein, W. Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. Sleep 31, 197–203 (2008).

    PubMed  PubMed Central  Google Scholar 

  157. Tucker, M. A. et al. A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol. Learn. Mem. 86, 241–247 (2006).

    PubMed  Google Scholar 

  158. Gais, S., Lucas, B. & Born, J. Sleep after learning aids memory recall. Learn. Mem. 13, 259–262 (2006).

    PubMed  Google Scholar 

  159. Payne, J. D., Chambers, A. M. & Kensinger, E. A. Sleep promotes lasting changes in selective memory for emotional scenes. Front. Integr. Neurosci. 6, 108 (2012).

    PubMed  PubMed Central  Google Scholar 

  160. Pennartz, C. M. A., Uylings, H. B. M., Barnes, C. A. & McNaughton, B. L. Memory reactivation and consolidation during sleep: from cellular mechanisms to human performance. Prog. Brain Res. 138, 143–166 (2002).

    CAS  PubMed  Google Scholar 

  161. Cellini, N., Torre, J., Stegagno, L. & Sarlo, M. Sleep before and after learning promotes the consolidation of both neutral and emotional information regardless of REM presence. Neurobiol. Learn. Mem. 133, 136–144 (2016).

    PubMed  Google Scholar 

  162. Drummond, S. P. & Brown, G. G. The effects of total sleep deprivation on cerebral responses to cognitive performance. Neuropsychopharmacology 25, S68–73 (2001).

    CAS  PubMed  Google Scholar 

  163. Drummond, S. P., Gillin, J. C. & Brown, G. G. Increased cerebral response during a divided attention task following sleep deprivation. J. Sleep Res. 10, 85–92 (2001).

    CAS  PubMed  Google Scholar 

  164. Van Der Werf, Y. D. et al. Sleep benefits subsequent hippocampal functioning. Nat. Neurosci. 12, 122–123 (2009).

    Google Scholar 

  165. Mander, B. A., Santhanam, S., Saletin, J. M. & Walker, M. P. Wake deterioration and sleep restoration of human learning. Curr. Biol. 21, R183–184 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Elliott, G., Isaac, C. L. & Muhlert, N. Measuring forgetting: a critical review of accelerated long-term forgetting studies. Cortex 54, 16–32 (2014).

    PubMed  PubMed Central  Google Scholar 

  167. Isaac, C. L. & Mayes, A. R. Rate of forgetting in amnesia: I. Recall and recognition of prose. J. Exp. Psychol. Learn. Mem. Cogn. 25, 942–962 (1999).

    CAS  PubMed  Google Scholar 

  168. Kopelman, M. D. Organic retrograde amnesia. Cortex 38, 655–659 (2002).

    PubMed  Google Scholar 

  169. Huppert, F. A. & Piercy, M. Normal and abnormal forgetting in organic amnesia: effect of locus of lesion. Cortex 15, 385–390 (1979).

    CAS  PubMed  Google Scholar 

  170. Freed, D. M., Corkin, S. & Cohen, N. J. Forgetting in H. M.: a second look. Neuropsychologia 25, 461–471 (1987).

    CAS  PubMed  Google Scholar 

  171. Freed, D. M. & Corkin, S. Rate of forgetting in H. M.: 6-month recognition. Behav. Neurosci. 102, 823–827 (1988).

    CAS  PubMed  Google Scholar 

  172. Squire, L. R. Two forms of human amnesia: an analysis of forgetting. J. Neurosci. 1, 635–640 (1981).

    CAS  PubMed  Google Scholar 

  173. Huppert, F. A. & Piercy, M. Recognition memory in amnesic patients: effect of temporal context and familiarity of material. Cortex 12, 3–20 (1976).

    CAS  PubMed  Google Scholar 

  174. McKee, R. D. & Squire, L. R. Equivalent forgetting rates in long-term memory for diencephalic and medial temporal lobe amnesia. J. Neurosci. 12, 3765–3772 (1992).

    CAS  PubMed  Google Scholar 

  175. Yonelinas, A. P. The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behav. Brain Res. 254, 34–44 (2013).

    PubMed  PubMed Central  Google Scholar 

  176. Rolls, E. T. A theory of hippocampal function in memory. Hippocampus 6, 601–620 (1996).

    CAS  PubMed  Google Scholar 

  177. Yonelinas, A. P. & Ritchey, M. The slow forgetting of emotional episodic memories: an emotional binding account. Trends Cogn. Sci. 19, 259–267 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. DuBrow, S., Rouhani, N., Niv, Y. & Norman, K. A. Does mental context drift or shift? Curr. Opin. Behav. Sci. 17, 141–146 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Shields, G. S., Sazma, M. A., McCullough, A. M. & Yonelinas, A. P. The effects of acute stress on episodic memory: a meta-analysis and integrative review. Psychol. Bull. 143, 636–675 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Gisquet-Verrier, P. et al. Integration of new information with active memory accounts for retrograde amnesia: a challenge to the consolidation/reconsolidation hypothesis? J. Neurosci. 35, 11623–11633 (2015).

    CAS  PubMed  Google Scholar 

  181. Quamme, J. R., Yonelinas, A. P. & Norman, K. A. Effect of unitization on associative recognition in amnesia. Hippocampus 17, 192–200 (2007).

    PubMed  Google Scholar 

  182. Sharon, T., Moscovitch, M. & Gilboa, A. Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proc. Natl Acad. Sci. USA 108, 1146–1151 (2011).

    CAS  PubMed  Google Scholar 

  183. Coutanche, M. N. & Thompson-Schill, S. L. Rapid consolidation of new knowledge in adulthood via fast mapping. Trends Cogn. Sci. 19, 486–488 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).

    CAS  PubMed  Google Scholar 

  185. Bastin, C. et al. Associative memory in aging: the effect of unitization on source memory. Psychol. Aging 28, 275–283 (2013).

    PubMed  PubMed Central  Google Scholar 

  186. Hirano, M. & Noguchi, K. Dissociation between specific personal episodes and other aspects of remote memory in a patient with hippocampal amnesia. Percept. Mot. Skills 87, 99–107 (1998).

    CAS  PubMed  Google Scholar 

  187. Schacter, D. L., Chiu, C. Y. & Ochsner, K. N. Implicit memory: a selective review. Annu. Rev. Neurosci. 16, 159–182 (1993).

    CAS  PubMed  Google Scholar 

  188. Cave, C. B. & Squire, L. R. Intact and long-lasting repetition priming in amnesia. J. Exp. Psychol. Learn. Mem. Cogn. 18, 509–520 (1992).

    CAS  PubMed  Google Scholar 

  189. McAndrews, M. P., Glisky, E. L. & Schacter, D. L. When priming persists: long-lasting implicit memory for a single episode in amnesic patients. Neuropsychologia 25, 497–506 (1987).

    CAS  PubMed  Google Scholar 

  190. Tranel, D., Damasio, A. R., Damasio, H. & Brandt, J. P. Sensorimotor skill learning in amnesia: additional evidence for the neural basis of nondeclarative memory. Learn. Mem. 1, 165–179 (1994).

    CAS  PubMed  Google Scholar 

  191. Cohen, N. J. & Squire, L. R. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210, 207–210 (1980).

    CAS  PubMed  Google Scholar 

  192. Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. Sleep inspires insight. Nature 427, 352–355 (2004).

    CAS  PubMed  Google Scholar 

  193. Laureys, S., Peigneux, P., Perrin, F. & Maquet, P. Sleep and motor skill learning. Neuron 35, 5–7 (2002).

    CAS  PubMed  Google Scholar 

  194. Pan, S. C. & Rickard, T. C. Sleep and motor learning: Is there room for consolidation? Psychol. Bull. 141, 812–834 (2015).

    PubMed  Google Scholar 

  195. Miranda, M. & Bekinschtein, P. Plasticity mechanisms of memory consolidation and reconsolidation in the perirhinal cortex. Neuroscience 370, 46–61 (2018).

    CAS  PubMed  Google Scholar 

  196. Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).

    PubMed  Google Scholar 

  197. Bayley, P. J., Hopkins, R. O. & Squire, L. R. Successful recollection of remote autobiographical memories by amnesic patients with medial temporal lobe lesions. Neuron 38, 135–144 (2003).

    CAS  PubMed  Google Scholar 

  198. Bright, P. et al. Retrograde amnesia in patients with hippocampal, medial temporal, temporal lobe, or frontal pathology. Learn. Mem. 13, 545–557 (2006).

    PubMed  PubMed Central  Google Scholar 

  199. Cipolotti, L. et al. Long-term retrograde amnesia…the crucial role of the hippocampus. Neuropsychologia 39, 151–172 (2001).

    CAS  PubMed  Google Scholar 

  200. Kapur, N. & Brooks, D. J. Temporally-specific retrograde amnesia in two cases of discrete bilateral hippocampal pathology. Hippocampus 9, 247–254 (1999).

    CAS  PubMed  Google Scholar 

  201. Reed, J. M. & Squire, L. R. Retrograde amnesia for facts and events: findings from four new cases. J. Neurosci. 18, 3943–3954 (1998).

    CAS  PubMed  Google Scholar 

  202. Zola-Morgan, S., Squire, L. R. & Amaral, D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 6, 2950–2967 (1986).

    CAS  PubMed  Google Scholar 

  203. Bernard, F. A. et al. The hippocampal region is involved in successful recognition of both remote and recent famous faces. Neuroimage 22, 1704–1714 (2004).

    PubMed  Google Scholar 

  204. Bonnici, H. M., Chadwick, M. J. & Maguire, E. A. Representations of recent and remote autobiographical memories in hippocampal subfields. Hippocampus 23, 849–854 (2013).

    PubMed  PubMed Central  Google Scholar 

  205. Haist, F., Bowden Gore, J. & Mao, H. Consolidation of human memory over decades revealed by functional magnetic resonance imaging. Nat. Neurosci. 4, 1139–1145 (2001).

    CAS  PubMed  Google Scholar 

  206. Maguire, E. A., Henson, R. N., Mummery, C. J. & Frith, C. D. Activity in prefrontal cortex, not hippocampus, varies parametrically with the increasing remoteness of memories. Neuroreport 12, 441–444 (2001).

    CAS  PubMed  Google Scholar 

  207. Rissman, J., Chow, T. E., Reggente, N. & Wagner, A. D. Decoding fMRI signatures of real-world autobiographical memory retrieval. J. Cogn. Neurosci. 28, 604–620 (2016).

    PubMed  Google Scholar 

  208. Ryan, L. et al. Hippocampal complex and retrieval of recent and very remote autobiographical memories: evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus 11, 707–714 (2001).

    CAS  PubMed  Google Scholar 

  209. Soderlund, H., Moscovitch, M., Kumar, N., Mandic, M. & Levine, B. As time goes by: hippocampal connectivity changes with remoteness of autobiographical memory retrieval. Hippocampus 22, 670–679 (2012).

    PubMed  Google Scholar 

  210. Stark, C. E. & Squire, L. R. fMRI activity in the medial temporal lobe during recognition memory as a function of study-test interval. Hippocampus 10, 329–337 (2000).

    CAS  PubMed  Google Scholar 

  211. Steinvorth, S., Corkin, S. & Halgren, E. Ecphory of autobiographical memories: an fMRI study of recent and remote memory retrieval. Neuroimage 30, 285–298 (2006).

    PubMed  Google Scholar 

  212. Tsukiura, T. et al. Time-dependent contribution of the hippocampal complex when remembering the past: a PET study. Neuroreport 13, 2319–2323 (2002).

    PubMed  Google Scholar 

  213. Gais, S. et al. Sleep transforms the cerebral trace of declarative memories. Proc. Natl Acad. Sci. USA 104, 18778–18783 (2007).

    CAS  PubMed  Google Scholar 

  214. Milton, F. et al. An fMRI study of long-term everyday memory using SenseCam. Memory 19, 733–744 (2011).

    CAS  PubMed  Google Scholar 

  215. Piefke, M., Weiss, P. H., Zilles, K., Markowitsch, H. J. & Fink, G. R. Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory. Brain 126, 650–668 (2003).

    PubMed  Google Scholar 

  216. Smith, C. N. & Squire, L. R. Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory. J. Neurosci. 29, 930–938 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Takashima, A. et al. Shift from hippocampal to neocortical centered retrieval network with consolidation. J. Neurosci. 29, 10087–10093 (2009).

    CAS  PubMed  Google Scholar 

  218. Takashima, A. et al. Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc. Natl Acad. Sci. USA 103, 756–761 (2006).

    CAS  PubMed  Google Scholar 

  219. Yamashita, K. et al. Formation of long-term memory representation in human temporal cortex related to pictorial paired associates. J. Neurosci. 29, 10335–10340 (2009).

    CAS  PubMed  Google Scholar 

  220. Bosshardt, S. et al. One month of human memory consolidation enhances retrieval-related hippocampal activity. Hippocampus 15, 1026–1040 (2005).

    PubMed  Google Scholar 

  221. Bosshardt, S. et al. Effects of memory consolidation on human hippocampal activity during retrieval. Cortex 41, 486–498 (2005).

    PubMed  Google Scholar 

  222. Piolino, P. et al. Re-experiencing old memories via hippocampus: a PET study of autobiographical memory. Neuroimage 22, 1371–1383 (2004).

    PubMed  Google Scholar 

  223. Rekkas, P. V. & Constable, R. T. Evidence that autobiographic memory retrieval does not become independent of the hippocampus: an fMRI study contrasting very recent with remote events. J. Cogn. Neurosci. 17, 1950–1961 (2005).

    CAS  PubMed  Google Scholar 

  224. Donix, M. et al. Age-dependent differences in the neural mechanisms supporting long-term declarative memories. Arch. Clin. Neuropsychol. 25, 383–395 (2010).

    PubMed  Google Scholar 

  225. Douville, K. et al. Medial temporal lobe activity for recognition of recent and remote famous names: an event-related fMRI study. Neuropsychologia 43, 693–703 (2005).

    PubMed  Google Scholar 

  226. Furman, O., Mendelsohn, A. & Dudai, Y. The episodic engram transformed: time reduces retrieval-related brain activity but correlates it with memory accuracy. Learn. Mem. 19, 575–587 (2012).

    PubMed  Google Scholar 

  227. Harand, C. et al. The hippocampus remains activated over the long term for the retrieval of truly episodic memories. PLOS ONE 7, e43495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Janzen, G., Jansen, C. & van Turennout, M. Memory consolidation of landmarks in good navigators. Hippocampus 18, 40–47 (2008).

    PubMed  Google Scholar 

  229. Maguire, E. A. & Frith, C. D. Lateral asymmetry in the hippocampal response to the remoteness of autobiographical memories. J. Neurosci. 23, 5302–5307 (2003).

    CAS  PubMed  Google Scholar 

  230. Ritchey, M., Montchal, M. E., Yonelinas, A. P. & Ranganath, C. Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. eLife 4, e05025 (2015).

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is based on discussions with students and faculty participating in a graduate seminar at the University of California–Davis, including A. Borders, G. Shields, R. Goodrich, M. Ramey, T. Baer, I. Pastor, C. Riddell, M. Sazma, A. McCullough, C. Carrasco, M. Ritchey, D. Ragland, M. Starrett, M. Liang, A. Barnett, Z. Reagh, B. Cohn-Sheehy, J. Crivelli-Decker, W. Reilly, M. Gruber, N. Bouffard, H. Dimsdale-Zucker, J. Wilmot, Y. Ota, K. Puhger and J. Krueger. This work was supported by the US National Eye Institute of the US National Institutes of Health (NIH) under Award Number R01EY025999 (A.P.Y.); NIH/National Institute of Neurological Disorders and Stroke (NINDS) grants NS076856 (A.D.E.) and NS093052 (A.D.E. and A.P.Y.); and NINDS grants R01NS088053 and R21NS101694 (B.J.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Reviewer information

Nature Reviews Neuroscience thanks P. Frankland, M. Moscovitch, R. J. Sutherland and the other, anonymous reviewer for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research of data for the article, the discussion of content and the writing, reviewing and editing of this manuscript before submission.

Corresponding author

Correspondence to Andrew P. Yonelinas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonelinas, A.P., Ranganath, C., Ekstrom, A.D. et al. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat Rev Neurosci 20, 364–375 (2019). https://doi.org/10.1038/s41583-019-0150-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0150-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing