Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Affective valence in the brain: modules or modes?

Abstract

How do brain systems evaluate the affective valence of a stimulus — that is, its quality of being good or bad? One possibility is that a neural subsystem, or ‘module’ (such as a subregion of the brain, a projection pathway, a neuronal population or an individual neuron), is permanently dedicated to mediate only one affective function, or at least only one specific valence — an idea that is termed here the ‘affective modules’ hypothesis. An alternative possibility is that a given neural module can exist in multiple neurobiological states that give it different affective functions — an idea termed here the ‘affective modes’ hypothesis. This suggests that the affective function or valence mediated by a neural module need not remain permanently stable but rather can change dynamically across different situations. An evaluation of evidence for the ‘affective modules’ versus ‘affective modes’ hypotheses may be useful for advancing understanding of the affective organization of limbic circuitry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The affective modules and affective modes hypotheses.
Fig. 2: Evidence for affective modules and affective modes in the nucleus accumbens.
Fig. 3: Evidence for affective modules and affective modes in the central amygdala.

Similar content being viewed by others

References

  1. Bentham, J. An Introduction to the Principles of Morals and Legislation (T. Payne and Son, 1789).

  2. Berridge, K. C. & Kringelbach, M. L. Pleasure systems in the brain. Neuron 86, 646–664 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Damasio, A. & Carvalho, G. B. The nature of feelings: Evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14, 143–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Wundt, W. Outlines of Psychology (Engelmann, 1907).

  6. Zajonc, R. B. Feeling and thinking: preferences need no inferences. Am. Psychol. 35, 151–175 (1980).

    Article  Google Scholar 

  7. Russell, J. A. & Barrett, L. F. Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. J. Pers. Soc. Psychol. 76, 805–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Frijda, N. H. & Parrott, W. G. Basic emotions or ur-emotions? Emot. Rev. 3, 406–415 (2011).

    Article  Google Scholar 

  9. Schneirla, T. C. An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal. Nebr. Symp. Motiv. 7, 1–42 (1959).

    Google Scholar 

  10. Bindra, D. How adaptive behavior is produced: a perceptual-motivation alternative to response reinforcement. Behav. Brain Sci. 1, 41–91 (1978).

    Article  Google Scholar 

  11. Toates, F. Motivational Systems (Cambridge Univ. Press, 1986).

  12. Berridge, K. C. Evolving concepts of emotion and motivation. Front. Psychol. 9, 1647 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Frijda, N. H. The evolutionary emergence of what we call “emotions”. Cogn. Emot. 30, 609–620 (2016).

    Article  PubMed  Google Scholar 

  14. Damasio, A. The Strange Order of Things: Life, Feeling, and the Making of Cultures (Pantheon, 2018).

  15. Winkielman, P., Berridge, K. C. & Wilbarger, J. L. Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Pers. Soc. Psychol. Bull. 31, 121–135 (2005).

    Article  PubMed  Google Scholar 

  16. Winkielman, P. & Gogolushko, Y. Influence of suboptimally and optimally presented affective pictures and words on consumption-related behavior. Front. Psychol. 8, 2261 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kravitz, A. V. & Kreitzer, A. C. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology 27, 167–177 (2012).

    Article  PubMed  Google Scholar 

  18. Francis, T. C. & Lobo, M. K. Emerging role for nucleus accumbens medium spiny neuron subtypes in depression. Biol. Psychiatry 81, 645–653 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Koo, J. W. et al. Loss of BDNF signaling in D1r-expressing NAc neurons enhances morphine reward by reducing GABA inhibition. Neuropsychopharmacology 39, 2646–2653 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Volman, S. F. et al. New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system. J. Neurosci. 33, 17569–17576 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Xiu, J. et al. Visualizing an emotional valence map in the limbic forebrain by TAI-FISH. Nat. Neurosci. 17, 1552–1559 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Ward, R. D. et al. Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology 37, 1699–1707 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Richard, J. M. & Berridge, K. C. Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D1 alone for appetitive eating but D1 and D2 together for fear. J. Neurosci. 31, 12866–12879 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. LeDoux, J. E. & Hofmann, S. G. The subjective experience of emotion: a fearful view. Curr. Opin. Behav. Sci. 19, 67–72 (2018).

    Article  Google Scholar 

  25. Moscarello, J. M. & LeDoux, J. E. The contribution of the amygdala to aversive and appetitive Pavlovian processes. Emot. Rev. 5, 248–253 (2013).

    Article  Google Scholar 

  26. Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Britt, J. P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790–803 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Namburi, P. et al. A circuit mechanism for differentiating positive and negative associations. Nature 520, 675–678 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kim, J., Pignatelli, M., Xu, S., Itohara, S. & Tonegawa, S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19, 1636–1646 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Douglass, A. M. et al. Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat. Neurosci. 20, 1384–1394 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Isosaka, T. et al. Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 163, 1153–1164 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Fanselow, M. S. & Wassum, K. M. The origins and organization of vertebrate Pavlovian conditioning. Cold Spring Harb. Perspect. Biol. 8, a021717 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Cai, H., Haubensak, W., Anthony, T. E. & Anderson, D. J. Central amygdala pkc-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17, 1240–1248 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Müller, J. Elements of Physiology (Taylor & Walton, 1842).

  38. Kaas, J. H. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44, 107–112 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Fadok, J. P., Markovic, M., Tovote, P. & Luthi, A. New perspectives on central amygdala function. Curr. Opin. Neurobiol. 49, 141–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  41. Reynolds, S. M. & Berridge, K. C. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat. Neurosci. 11, 423–425 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Barrett, L. F. & Wager, T. D. The structure of emotion: evidence from neuroimaging studies. Curr. Dir. Psychol. 15, 79–83 (2006).

    Article  Google Scholar 

  43. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Wise, R. A. The anhedonia hypothesis: mark III. Behav. Brain Sci. 8, 178–186 (1985).

    Article  Google Scholar 

  45. Wyvell, C. L. & Berridge, K. C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berridge, K. C. & Valenstein, E. S. What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behav. Neurosci. 105, 3–14 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, K. S., Berridge, K. C. & Aldridge, J. W. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc. Natl Acad. Sci. USA 108, E255–E264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schultz, W. Reward functions of the basal ganglia. J. Neural Transm. (Vienna) 123, 679–693 (2016).

    Article  Google Scholar 

  49. Berke, J. D. What does dopamine mean? Nat. Neurosci. 21, 787–793 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pecina, S. & Berridge, K. C. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for pit enhancement. Eur. J. Neurosci. 37, 1529–1540 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  51. Warlow, S. M., Robinson, M. J. F. & Berridge, K. C. Optogenetic central amygdala stimulation intensifies and narrows motivation for cocaine. J. Neurosci. 37, 8330–8348 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. DiFeliceantonio, A. G. & Berridge, K. C. Dorsolateral neostriatum contribution to incentive salience: opioid or dopamine stimulation makes one reward cue more motivationally attractive than another. Eur. J. Neurosci. 43, 1203–1218 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  53. Berridge, K. C. From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur. J. Neurosci. 35, 1124–1143 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  54. Flagel, S. B. & Robinson, T. E. Neurobiological basis of individual variation in stimulus-reward learning. Curr. Opin. Behav. Sci. 13, 178–185 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  55. Hikosaka, O., Ghazizadeh, A., Griggs, W. & Amita, H. Parallel basal ganglia circuits for decision making. J. Neural Transm. (Vienna) 125, 515–529 (2018).

    Article  Google Scholar 

  56. Hickey, C. & Peelen, M. V. Neural mechanisms of incentive salience in naturalistic human vision. Neuron 85, 512–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Robinson, M. J. & Berridge, K. C. Instant transformation of learned repulsion into motivational “wanting”. Curr. Biol. 23, 282–289 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Salamone, J. D., Correa, M., Yang, J. H., Rotolo, R. & Presby, R. Dopamine, effort-based choice, and behavioral economics: basic and translational research. Front. Behav. Neurosci. 12, 52 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Castro, D. C. & Berridge, K. C. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proc. Natl Acad. Sci. USA 114, E9125–E9134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Castro, D. C., Terry, R. A. & Berridge, K. C. Orexin in rostral hotspot of nucleus accumbens enhances sucrose ‘liking’ and intake but scopolamine in caudal shell shifts ‘liking’ toward ‘disgust’ and ‘fear’. Neuropsychopharmacology 41, 2101–2111 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ho, C. Y. & Berridge, K. C. Excessive disgust caused by brain lesions or temporary inactivations: mapping hotspots of the nucleus accumbens and ventral pallidum. Eur. J. Neurosci. 40, 3556–3572 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Castro, D. C. & Berridge, K. C. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J. Neurosci. 34, 4239–4250 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Peciña, S. & Berridge, K. C. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J. Neurosci. 25, 11777–11786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Al-Hasani, R. et al. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron 87, 1063–1077 (2016).

    Article  CAS  Google Scholar 

  65. Kelley, A. E., Gauthier, A. M. & Lang, C. G. Amphetamine microinjections into distinct striatal subregions cause dissociable effects on motor and ingestive behavior. Behav. Brain Res. 35, 27–39 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, M., Balmadrid, C. & Kelley, A. E. Nucleus accumbens opioid, gabaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav. Neurosci. 117, 202–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Bakshi, V. P. & Kelley, A. E. Striatal regulation of morphine-induced hyperphagia - an anatomical mapping study. Psychopharmacology 111, 207–214 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Thompson, R. H. & Swanson, L. W. Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture. Proc. Natl Acad. Sci. USA 107, 15235–15239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zahm, D. S., Parsley, K. P., Schwartz, Z. M. & Cheng, A. Y. On lateral septum-like characteristics of outputs from the accumbal hedonic ‘hotspot’ of Peciña and Berridge with commentary on the transitional nature of basal forebrain ‘boundaries’. J. Comp. Neurol. 521, 50–68 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Faure, A., Richard, J. M. & Berridge, K. C. Desire and dread from the nucleus accumbens: cortical glutamate and subcortical GABA differentially generate motivation and hedonic impact in the rat. PLOS ONE 5, e11223 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Meredith, G. E., Baldo, B. A., Andrezjewski, M. E. & Kelley, A. E. The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct. Funct. 213, 17–27 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  72. Carlezon, W. A. Jr & Thomas, M. J. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl. 1), 122–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Richard, J. M., Plawecki, A. M. & Berridge, K. C. Nucleus accumbens GABArgic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamine. Eur. J. Neurosci. 37, 1789–1802 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  74. Reynolds, S. M. & Berridge, K. C. Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding. Eur. J. Neurosci. 17, 2187–2200 (2003).

    Article  PubMed  Google Scholar 

  75. Reynolds, S. M. & Berridge, K. C. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste “liking”/”disliking” reactions, place preference/avoidance, and fear. J. Neurosci. 22, 7308–7320 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wenzel, J. M. et al. Phasic dopamine signals in the nucleus accumbens that cause active avoidance require endocannabinoid mobilization in the midbrain. Curr. Biol. 28, 1392–1404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Humphries, M. D. & Prescott, T. J. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog. Neurobiol. 90, 385–417 (2010).

    Article  PubMed  Google Scholar 

  78. Cole, S. L., Robinson, M. J. F. & Berridge, K. C. Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence. PLOS ONE 13, e0207694 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Soares-Cunha, C. et al. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat. Commun. 7, 11829 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Steinberg, E. E. et al. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLOS ONE 9, e94771 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Trifilieff, P. et al. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol. Psychiatry 18, 1025–1033 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Song, R. et al. Blockade of d3 receptors by yqa14 inhibits cocaine’s rewarding effects and relapse to drug-seeking behavior in rats. Neuropharmacology 77, 398–405 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Stratford, T. R., Swanson, C. J. & Kelley, A. Specific changes in food intake elicited by blockade or activation of glutamate receptors in the nucleus accumbens shell. Behav. Brain Res. 93, 43–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Wirtshafter, D. & Stratford, T. R. Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell. Pharmacol. Biochem. Behav. 96, 342–346 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Faure, A., Reynolds, S. M., Richard, J. M. & Berridge, K. C. Mesolimbic dopamine in desire and dread: enabling motivation to be generated by localized glutamate disruptions in nucleus accumbens. J. Neurosci. 28, 7184–7192 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Paré, D. & Quirk, G. J. When scientific paradigms lead to tunnel vision: lessons from the study of fear. NPJ Sci. Learn. 2, 6 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  87. Kyriazi, P., Headley, D. B. & Pare, D. Multi-dimensional coding by basolateral amygdala neurons. Neuron 99, 1315–1328 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maren, S. Parsing reward and aversion in the amygdala. Neuron 90, 209–211 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, L. et al. The coding of valence and identity in the mammalian taste system. Nature 558, 127–131 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Palmiter, R. D. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 41, 280–293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pare, D., Quirk, G. J. & Ledoux, J. E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004).

    Article  PubMed  Google Scholar 

  92. Millan, E. Z., Kim, H. A. & Janak, P. H. Optogenetic activation of amygdala projections to nucleus accumbens can arrest conditioned and unconditioned alcohol consummatory behavior. Neuroscience 360, 106–117 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Partridge, J. G. et al. Stress increases gabaergic neurotransmission in crf neurons of the central amygdala and bed nucleus stria terminalis. Neuropharmacology 107, 239–250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wise, R. A. & Koob, G. F. The development and maintenance of drug addiction. Neuropsychopharmacology 39, 254–262 (2014).

    Article  PubMed  Google Scholar 

  97. Koob, G. F. Brain stress systems in the amygdala and addiction. Brain Res. 1293, 61–75 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Gallagher, M., Graham, P. W. & Holland, P. C. The amygdala central nucleus and appetitive Pavlovian conditioning: Lesions impair one class of conditioned behavior. J. Neurosci. 10, 1906–1911 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Holland, P. C., Petrovich, G. D. & Gallagher, M. The effects of amygdala lesions on conditioned stimulus- potentiated eating in rats. Physiol. Behav. 76, 117–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Robinson, M. J., Warlow, S. M. & Berridge, K. C. Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. J. Neurosci. 34, 16567–16580 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Baumgartner, H. M., Schulkin, J. & Berridge, K. C. in Neuroscience 2018 600.8 (Society for Neuroscience, San Diego, CA, 2018).

  102. Flandreau, E. I., Ressler, K. J., Owens, M. J. & Nemeroff, C. B. Chronic overexpression of corticotropin-releasing factor from the central amygdala produces hpa axis hyperactivity and behavioral anxiety associated with gene-expression changes in the hippocampus and paraventricular nucleus of the hypothalamus. Psychoneuroendocrinology 37, 27–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Pomrenze, M. B. et al. A transgenic rat for investigating the anatomy and function of corticotrophin releasing factor circuits. Front. Neurosci. 9, 487 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  104. Asok, A. et al. Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear. Mol. Psychiatry 23, 914–922 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Zhong, W., Li, Y., Feng, Q. & Luo, M. Learning and stress shape the reward response patterns of serotonin neurons. J. Neurosci. 37, 8863–8875 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lobo, M. K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Vallery-Radot, R. The Life of Pasteur (McLure, Phillips & Co., 1902).

  108. Steiner, J. E., Glaser, D., Hawilo, M. E. & Berridge, K. C. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci. Biobehav Rev. 25, 53–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Steiner, J. E. The gustofacial response: observation on normal and anencephalic newborn infants. Symp. Oral Sens. Percept. 4, 254–278 (1973).

    Google Scholar 

  110. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Fanselow, M. S. & Pennington, Z. T. A return to the psychiatric dark ages with a two-system framework for fear. Behav. Res. Ther. 100, 24–29 (2018).

    Article  PubMed  Google Scholar 

  113. Coss, R. G. & Owings, D. H. Snake-directed behavior by snake naive and experienced california ground squirrels in a simulated burrow. Z. Tierpsychol. 48, 421–435 (1978).

    Google Scholar 

  114. Treit, D., Engin, E. & McEown, K. Animal models of anxiety and anxiolytic drug action. Curr. Top. Behav. Neurosci. 2, 121–160 (2010).

    Article  PubMed  Google Scholar 

  115. Treit, D., Pinel, J. P. & Fibiger, H. C. Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol. Biochem. Behav. 15, 619–626 (1981).

    Article  CAS  PubMed  Google Scholar 

  116. Reynolds, S. M. & Berridge, K. C. Fear and feeding in the nucleus accumbens shell: rostrocaudal segregation of GABA-elicited defensive behavior versus eating behavior. J. Neurosci. 21, 3261–3270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bolles, R. C. & Fanselow, M. S. A perceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3, 291–323 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks J. Olney, E. Naffziger, I. Morales, H. Baumgartner and the manuscript reviewers for helpful comments on an earlier version of the manuscript, and S. Warlow for assistance in the initial figure preparation. Research in the laboratory of K.C.B. has been supported by US National Institutes of Health grants DA015188 and MH063649.

Reviewer information

Nature Reviews Neuroscience thanks P. Janak and K. Tye, and other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent C. Berridge.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berridge, K.C. Affective valence in the brain: modules or modes?. Nat Rev Neurosci 20, 225–234 (2019). https://doi.org/10.1038/s41583-019-0122-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0122-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing