Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiology of the built environment

Abstract

The built environment comprises all structures built by humans, including our homes, workplaces, schools and vehicles. As in any ecosystem on Earth, microorganisms have been found in every part of the built environment that has been studied. They exist in the air, on surfaces and on building materials, usually dispersed by humans, animals and outdoor sources. Those microbial communities and their metabolites have been implied to cause (or exacerbate) and prevent (or mitigate) human disease. In this Review, we outline the history of the field of microbiology of the built environment and discuss recent insights that have been gained into microbial ecology, adaptation and evolution of this ecosystem. Finally, we consider the implications of this research, specifically, how it is changing the types of materials we use in buildings and how our built environments affect human health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacterial diversity of the built environment.
Fig. 2: Routes of microbial transmission.
Fig. 3: Effects of the microbial metabolic products on human health.
Fig. 4: Shaping the indoor microbiome.

Similar content being viewed by others

References

  1. Martin, L. J. et al. Evolution of the indoor biome. Trends Ecol. Evol. 30, 223–232 (2015).

    PubMed  Google Scholar 

  2. Klepeis, N. E. et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 11, 231–252 (2001).

    CAS  PubMed  Google Scholar 

  3. Gibbons, S. M. The built environment is a microbial wasteland. mSystems 1, e00033 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Kelley, S. T., Theisen, U., Angenent, L. T., St Amand, A. & Pace, N. R. Molecular analysis of shower curtain biofilm microbes. Appl. Environ. Microbiol. 70, 4187–4192 (2004). This is the first study to apply molecular amplicon sequencing approaches to the actual microbiome of the built environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gibbons, S. M. et al. Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl. Environ. Microbiol. 81, 765–773 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Kembel, S. W. et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 6, 1469–1479 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams, R. I., Miletto, M., Taylor, J. W. & Bruns, T. D. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 7, 1262–1273 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Flores, G. E. et al. Diversity, distribution and sources of bacteria in residential kitchens: bacterial diversity of residential kitchens. Environ. Microbiol. 15, 588–596 (2013).

    CAS  PubMed  Google Scholar 

  9. Dunn, R. R., Fierer, N., Henley, J. B., Leff, J. W. & Menninger, H. L. Home life: factors structuring the bacterial diversity found within and between homes. PLOS ONE 8, e64133 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Bokulich, N. A., Ohta, M., Richardson, P. M. & Mills, D. A. Monitoring seasonal changes in winery-resident microbiota. PLOS ONE 8, e66437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeon, Y.-S., Chun, J. & Kim, B.-S. Identification of household bacterial community and analysis of species shared with human microbiome. Curr. Microbiol. 67, 557–563 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052.This study applies longitudinal analysis of both the human and animal occupants and built surfaces in homes, providing the first examples of the intensity of bidirectional colonization events.

  13. Miletto, M. & Lindow, S. E. Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome 3, 61 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Chase, J. et al. Geography and location are the primary drivers of office microbiome composition. mSystems 1, e00022-16 (2016). This study shows that under normal (dry) office conditions, bacterial communities do not differ on the basis of material but do differ on the basis of the location in a room.

    PubMed  PubMed Central  Google Scholar 

  15. Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 49 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Lee, L., Tin, S. & Kelley, S. T. Culture-independent analysis of bacterial diversity in a child-care facility. BMC Microbiol. 7, 27 (2007).

    PubMed  PubMed Central  Google Scholar 

  17. Rintala, H., Pitkaranta, M., Toivola, M., Paulin, L. & Nevalainen, A. Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol. 8, 56 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Hewitt, K. M., Gerba, C. P., Maxwell, S. L. & Kelley, S. T. Office space bacterial abundance and diversity in three metropolitan areas. PLOS ONE 7, e37849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hewitt, K. M. et al. Bacterial diversity in two neonatal intensive care units (NICUs). PLOS ONE 8, e54703 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kembel, S. W. et al. Architectural design drives the biogeography of indoor bacterial communities. PLOS ONE 9, e87093 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Meadow, J. F. et al. Bacterial communities on classroom surfaces vary with human contact. Microbiome 2, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Meadow, J. F. et al. Humans differ in their personal microbial cloud. PeerJ. 3, e1258 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Amend, A. S., Seifert, K. A., Samson, R. & Bruns, T. D. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl Acad. Sci. USA 107, 13748–13753 (2010). This is the first study to explore the geographical and climate-driven diversity of indoor fungal communities, providing evidence to support the potential relationship between fungal diversity and composition and differences in health characteristics.

    CAS  PubMed  Google Scholar 

  24. Barberán, A. et al. The ecology of microscopic life in household dust. Proc. R. Soc. B Biol. Sci. 282, 20151139 (2015).

    Google Scholar 

  25. Emerson, J. B. et al. Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado Front Range flood. Environ. Sci. Technol. 49, 2675–2684 (2015).

    CAS  PubMed  Google Scholar 

  26. Flores, G. E. et al. Microbial biogeography of public restroom surfaces. PLOS ONE 6, e28132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dannemiller, K. C., Gent, J. F., Leaderer, B. P. & Peccia, J. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26, 179–192 (2016).

    CAS  PubMed  Google Scholar 

  28. Weikl, F. et al. Fungal and bacterial communities in indoor dust follow different environmental determinants. PLOS ONE 11, e0154131 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Emerson, J. B. et al. High temporal variability in airborne bacterial diversity and abundance inside single-family residences. Indoor Air 27, 576–586 (2017).

    CAS  PubMed  Google Scholar 

  30. Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W. W. & Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom: size-resolved bioaerosol emission rates. Indoor Air 22, 339–351 (2012). This study involves a fundamental quantitative analysis of the abundance of bacterial and fungal particles emitted by occupants in a built environment, which supports the important contribution of humans and animals to the discovered diversity of indoor microbial communities.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hospodsky, D. et al. Human occupancy as a source of indoor airborne bacteria. PLOS ONE 7, e34867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hospodsky, D. et al. Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air 25, 641–652 (2015).

    CAS  PubMed  Google Scholar 

  33. Kunkel, S. A., Azimi, P., Zhao, H., Stark, B. C. & Stephens, B. Quantifying the size-resolved dynamics of indoor bioaerosol transport and control. Indoor Air 27, 977–987 (2017).

    CAS  PubMed  Google Scholar 

  34. Miller, J. D. & Young, J. C. The use of ergosterol to measure exposure to fungal propagules in indoor air. Am. Ind. Hyg. Assoc. J. 58, 39–43 (1997).

    CAS  PubMed  Google Scholar 

  35. Rao, C. Y., Cox-Ganser, J. M., Chew, G. L., Doekes, G. & White, S. Use of surrogate markers of biological agents in air and settled dust samples to evaluate a water-damaged hospital. Indoor Air 15, 89–97 (2005).

    PubMed  Google Scholar 

  36. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    CAS  PubMed  Google Scholar 

  37. Dannemiller, K. C., Lang-Yona, N., Yamamoto, N., Rudich, Y. & Peccia, J. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmos. Environ. 84, 113–121 (2014).

    CAS  Google Scholar 

  38. Props, R. et al. Absolute quantification of microbial taxon abundances. ISME J. 11, 584–587 (2017).

    PubMed  Google Scholar 

  39. Prussin, A. J. & Marr, L. C. Sources of airborne microorganisms in the built environment. Microbiome 3, 78 (2015).

  40. Prussin, A. J., Garcia, E. B. & Marr, L. C. Total concentrations of virus and bacteria in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tringe, S. G. et al. The airborne metagenome in an indoor urban environment. PLOS ONE 3, e1862 (2008). This is the first metagenomics study of the indoor microbiome that found that the indoor air microorganisms were not random transients from surrounding outdoor environments, but rather originated from indoor niches.

    PubMed  PubMed Central  Google Scholar 

  42. Yooseph, S. et al. A metagenomic framework for the study of airborne microbial communities. PLOS ONE 8, e81862 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Adams, R. I. et al. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. Microbiome 5, 128 (2017). This is the first example of the integration of metabolomics and microbiome data in an indoor environment, enabling a clearer understanding of how the household conditions shape microbial metabolism.

    PubMed  PubMed Central  Google Scholar 

  44. Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7, 2061–2068 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Emerson, J. B. et al. Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Miller, J. D. & McMullin, D. R. Fungal secondary metabolites as harmful indoor air contaminants: 10 years on. Appl. Microbiol. Biotechnol. 98, 9953–9966 (2014). This study is a synthesis of available data on the low-molecular-weight toxins reliably known from fungi common on damp building materials and the toxins that have been measured on mouldy building materials.

    CAS  Google Scholar 

  47. Hegarty, B., Dannemiller, K. & Peccia, J. Gene expression of indoor fungal communities under damp building conditions: implications for human health. Indoor Air 28, 548–558 (2018).This is the first example of the application of metatranscriptomics to a built environment system, providing knowledge of how microbial transcription of genes is influenced by damp conditions.

    CAS  PubMed  Google Scholar 

  48. Weis, C. P. et al. Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office. JAMA 288, 2853–2858 (2002).

    PubMed  Google Scholar 

  49. Blatny, J. M. et al. Tracking airborne Legionella and Legionella pneumophila at a biological treatment plant. Environ. Sci. Technol. 42, 7360–7367 (2008).

    CAS  PubMed  Google Scholar 

  50. Nazaroff, W. W., Nicas, M. & Miller, S. L. Framework for evaluating measures to control nosocomial tuberculosis transmission. Indoor Air 8, 205–218 (1998).

    CAS  Google Scholar 

  51. Nosanchuk, J. D. et al. Evidence of zoonotic transmission of Cryptococcus neoformans from a pet cockatoo to an immunocompromised patient. Ann. Intern. Med. 132, 205 (2000).

    CAS  PubMed  Google Scholar 

  52. Furcolow, M. L., Menges, R. W. & Larsh, H. W. An epidemic of histoplasmosis involving man and animals. Ann. Intern. Med. 43, 173–181 (1955).

    CAS  PubMed  Google Scholar 

  53. Anderson, K. et al. Aspergillosis in immunocompromised paediatric patients: associations with building hygiene, design, and indoor air. Thorax 51, 256–261 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dick, E. C., Jennings, L. C., Mink, K. A., Wartgow, C. D. & Inborn, S. L. Aerosol transmission of rhinovirus colds. J. Infect. Dis. 156, 442–448 (1987).

    CAS  PubMed  Google Scholar 

  55. Myatt, T. A. et al. Detection of airborne rhinovirus and its relation to outdoor air supply in office environments. Am. J. Respir. Crit. Care Med. 169, 1187–1190 (2004).

    PubMed  Google Scholar 

  56. Fabian, P., Brain, J., Houseman, E. A., Gern, J. & Milton, D. K. Origin of exhaled breath particles from healthy and human rhinovirus-infected subjects. J. Aerosol Med. Pulm. Drug Deliv. 24, 137–147 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Jones, R. M. & Adida, E. Influenza infection risk and predominate exposure route: uncertainty analysis. Risk Anal. 31, 1622–1631 (2011).

    PubMed  Google Scholar 

  58. Cowling, B. J. et al. Aerosol transmission is an important mode of influenza A virus spread. Nat. Commun. 4, 1935 (2013).

  59. Lindsley, W. G. et al. Viable influenza A virus in airborne particles from human coughs. J. Occup. Environ. Hyg. 12, 107–113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Weber, D. J., Rutala, W. A., Miller, M. B., Huslage, K. & Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus. Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control 38, S25–S33 (2010).

    PubMed  Google Scholar 

  61. Otter, J. A., Yezli, S. & French, G. L. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect. Control Hosp. Epidemiol. 32, 687–699 (2011).

    PubMed  Google Scholar 

  62. Lopman, B. et al. Environmental transmission of norovirus gastroenteritis. Curr. Opin. Virol. 2, 96–102 (2012).

    PubMed  Google Scholar 

  63. Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C. & Gardam, M. Transmission of influenza A in human beings. Lancet Infect. Dis. 7, 257–265 (2007).

    PubMed  Google Scholar 

  64. Wilkins, D., Leung, M. H. & Lee, P. K. Indoor air bacterial communities in Hong Kong households assemble independently of occupant skin microbiomes: household air bacteria differ from occupant skin. Environ. Microbiol. 18, 1754–1763 (2016).

    CAS  PubMed  Google Scholar 

  65. Meadow, J. F. et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24, 41–48 (2014).

    CAS  PubMed  Google Scholar 

  66. Leung, M. H. Y., Wilkins, D., Li, E. K. T., Kong, F. K. F. & Lee, P. K. H. Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl. Environ. Microbiol. 80, 6760–6770 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Lax, S. et al. Bacterial colonization and succession in a newly opened hospital. Sci. Transl Med. 9, eaah6500 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Peccia, J. & Kwan, S. E. Buildings, beneficial microbes, and health. Trends Microbiol. 24, 595–597 (2016).

    CAS  PubMed  Google Scholar 

  69. USEPA. Exposure Factors Handbook (US Environmental Protection Agency, 2011).

  70. Eder, W. & von Mutius, E. Hygiene hypothesis and endotoxin: what is the evidence? Curr. Opin. Allergy Clin. Immunol. 4, 113–117 (2004).

    CAS  PubMed  Google Scholar 

  71. Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).

    CAS  PubMed  Google Scholar 

  72. Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. O’Connor, G. T. et al. Early-life home environment and risk of asthma among inner-city children. J. Allergy Clin. Immunol. 141, 1468–1475 (2017).

    PubMed  Google Scholar 

  74. Lynch, S. V. et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J. Allergy Clin. Immunol. 134, 593–601 (2014). This study demonstrates the association between indoor microbial allergens and asthmatic diseases, providing a solid association between disease and indoor microbiome.

    PubMed  PubMed Central  Google Scholar 

  75. Fujimura, K. E. et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl Acad. Sci. USA 111, 805–810 (2014).

    CAS  PubMed  Google Scholar 

  76. Kanchongkittiphon, W., Mendell, M. J., Gaffin, J. M., Wang, G. & Phipatanakul, W. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 Review by the Institute of Medicine. Environ. Health Perspect. 123, 6–20 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Mendell, M. J., Mirer, A. G., Cheung, K., Tong, M. & Douwes, J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ. Health Perspect. 119, 748–756 (2011). This is a systematic review of the epidemiological evidence for associations between dampness and mould and respiratory and allergic effects in humans. Evident dampness or mould has consistent positive associations with multiple allergic and respiratory effects, but measured microbiological agents in dust have limited suggestive associations.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fisk, W. J., Lei-Gomez, Q. & Mendell, M. J. Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air 17, 284–296 (2007).

    CAS  PubMed  Google Scholar 

  79. Bush, R. K., Portnoy, J. M., Saxon, A., Terr, A. I. & Wood, R. A. The medical effects of mold exposure. J. Allergy Clin. Immunol. 117, 326–333 (2006).

    PubMed  Google Scholar 

  80. Portnoy, J. M., Kwak, K., Dowling, P., VanOsdol, T. & Barnes, C. Health effects of indoor fungi. Ann. Allergy. Asthma. Immunol. 94, 313–320 (2005).

    PubMed  Google Scholar 

  81. Wessén, B. & Schoeps, K. O. Microbial volatile organic compounds—what substances can be found in sick buildings? Analyst 121, 1203–1205 (1996).

    PubMed  Google Scholar 

  82. Korpi, A., Pasanen, A. L. & Pasanen, P. Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions. Appl. Environ. Microbiol. 64, 2914–2919 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Araki, A. et al. Diffusive sampling and measurement of microbial volatile organic compounds in indoor air. Indoor Air 19, 421–432 (2009).

    CAS  PubMed  Google Scholar 

  84. Korpi, A., Pasanen, A.-L., Pasanen, P. & Kalliokoski, P. Microbial growth and metabolism in house dust. Int. Biodeterior. Biodegrad. 40, 19–27 (1997).

    Google Scholar 

  85. Kirjavainen, P. V. et al. Microbial secondary metabolites in homes in association with moisture damage and asthma. Indoor Air 26, 448–456 (2016).

    CAS  PubMed  Google Scholar 

  86. Ezeonu, I. M., Price, D. L., Simmons, R. B., Crow, S. A. & Ahearn, D. G. Fungal production of volatiles during growth on fiberglass. Appl. Environ. Microbiol. 60, 4172–4173 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schleibinger, H., Laussmann, D., Bornehag, C.-G., Eis, D. & Rueden, H. Microbial volatile organic compounds in the air of moldy and mold-free indoor environments. Indoor Air 18, 113–124 (2008).

    CAS  PubMed  Google Scholar 

  88. Kuske, M., Romain, A.-C. & Nicolas, J. Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build. Environ. 40, 824–831 (2005).

    Google Scholar 

  89. Ryan, T. J. & Beaucham, C. Dominant microbial volatile organic compounds in 23 US homes. Chemosphere 90, 977–985 (2013).

    CAS  PubMed  Google Scholar 

  90. Wargo, M. J. & Hogan, D. A. Fungal — bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9, 359–364 (2006).

    CAS  PubMed  Google Scholar 

  91. Gilbert, J. A. How do we make indoor environments and healthcare settings healthier? Microb. Biotechnol. 10, 11–13 (2017).

    PubMed  Google Scholar 

  92. Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189–200 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl Acad. Sci. USA 114, 4507–4512 (2017).

    CAS  PubMed  Google Scholar 

  94. Kelley, S. T. & Gilbert, J. A. Studying the microbiology of the indoor environment. Genome Biol. 14, 202 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. Verdier, T., Coutand, M., Bertron, A. & Roques, C. A review of indoor microbial growth across building materials and sampling and analysis methods. Build. Environ. 80, 136–149 (2014).

    Google Scholar 

  96. Dedesko, S. & Siegel, J. A. Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome 3, 71 (2015). This is a critical review of measurable moisture parameters on one of the most common building materials and associations with fungal growth.

    PubMed  PubMed Central  Google Scholar 

  97. Gravesen, S., Nielsen, P. A., Iversen, R. & Nielsen, K. F. Microfungal contamination of damp buildings—examples of risk constructions and risk materials. Environ. Health Perspect. 107(Suppl. 3), 505–508 (1999).

    Google Scholar 

  98. Hoang, C. P., Kinney, K. A., Corsi, R. L. & Szaniszlo, P. J. Resistance of green building materials to fungal growth. Int. Biodeterior. Biodegrad. 64, 104–113 (2010).

    CAS  Google Scholar 

  99. Gutarowska, B. Metabolic activity of moulds as a factor of building materials biodegradation. Pol. J. Microbiol. 59, 119–124 (2010).

    CAS  PubMed  Google Scholar 

  100. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Anesti, V. et al. Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Environ. Microbiol. 6, 820–830 (2004).

    CAS  PubMed  Google Scholar 

  102. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    CAS  PubMed  Google Scholar 

  103. Zhang, L. et al. Microbiological pattern of arterial catheters in the intensive care unit. BMC Microbiol. 10, 266 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Sangwan, N. et al. Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J. 8, 398–408 (2014).

    CAS  PubMed  Google Scholar 

  105. Hammond, T. G. et al. Effects of microgravity on the virulence of Listeria monocytogenes, Enterococcus faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus. Astrobiology 13, 1081–1090 (2013).

    CAS  PubMed  Google Scholar 

  106. Wilson, J. W. et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl Acad. Sci. USA 104, 16299–16304 (2007).

    CAS  PubMed  Google Scholar 

  107. Allen, C. A., Niesel, D. W. & Torres, A. G. The effects of low-shear stress on adherent-invasive Escherichia coli. Environ. Microbiol. 10, 1512–1525 (2008).

    CAS  PubMed  Google Scholar 

  108. La Duc, M. T. et al. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol. 73, 2600–2611 (2007).

    PubMed  PubMed Central  Google Scholar 

  109. Hampton-Marcell, J. T., Lopez, J. V. & Gilbert, J. A. The human microbiome: an emerging tool in forensics. Microb. Biotechnol. 10, 228–230 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Lax, S. et al. Forensic analysis of the microbiome of phones and shoes. Microbiome 3, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Brown, G. Z., Kline, J., Mhuireach, G., Northcutt, D. & Stenson, J. Making microbiology of the built environment relevant to design. Microbiome 4, 6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Beans, C. The microbiome of green design. BioScience 66, 801–806 (2016).

    Google Scholar 

  113. Zhang, D., Xu, C., Manwani, D. & Frenette, P. S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127, 801–809 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS  PubMed  Google Scholar 

  115. Leung, M. H. Y. & Lee, P. K. H. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome 4, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Coombs, K., Vesper, S., Green, B. J., Yermakov, M. & Reponen, T. Fungal microbiomes associated with green and non-green building materials. Int. Biodeterior. Biodegrad. 125, 251–257 (2017).

    Google Scholar 

  117. Adams, R. I. et al. Ten questions concerning the microbiomes of buildings. Build. Environ. 109, 224–234 (2016).

    Google Scholar 

  118. Sundell, J. On the history of indoor air quality and health. Indoor Air 14 (Suppl. 7), 51–58 (2004).

    PubMed  Google Scholar 

  119. Russell, F. A. R. The Atmosphere in Relation to Human Life and Health (Smithsonian Institution, 1896).

  120. Carnelley, T., Haldane, J. S. & Anderson, A. M. The carbonic acid, organic matter, and micro-organisms in air, more especially of dwellings and schools. Phil. Trans. R. Soc. B Biol. Sci. 178, 61–111 (1887). This is a seminal study on indoor microorganisms — ahead of its time by about 100 years.

    Google Scholar 

  121. Carnelley, P. & Haldane, J. S. The air of sewers. Proc. R. Soc. 42, 394–396 (1887).

    Google Scholar 

  122. Carnelley, T. & Foggie, J. The air of schools. J. Pathol. Bacteriol. 2, 157–173 (1894).

    Google Scholar 

  123. Sedgwick, W. T. Principles of Sanitary Science and the. Public Health: With Special Reference to the Causation and Prevention of Infectious Diseases. (Macmillan, London, 1902).

    Google Scholar 

  124. Huddleson, I. F. & Hull, T. G. Bacteria of the air in an amusement hall. Am. J. Public Health N. Y. N. 1912 10, 583–585 (1920).

    CAS  Google Scholar 

  125. Sundell, J. et al. Ventilation rates and health: multidisciplinary review of the scientific literature: ventilation rates and health. Indoor Air 21, 191–204 (2011).

    CAS  PubMed  Google Scholar 

  126. Quansah, R., Jaakkola, M. S., Hugg, T. T., Heikkinen, S. A. M. & Jaakkola, J. J. K. Residential dampness and molds and the risk of developing asthma: a systematic review and meta-analysis. PLOS ONE 7, e47526 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Carnelley, T. & Wilson, T. A. New method of determining the number of micro-organisms in air. Proc. R. Soc. 44, 455–464 (1888).

    Google Scholar 

  128. Graham-Smith, G. S. The microorganisms in the air of the House of Commons. J. Hyg. 3, 498–514 (1903).

    CAS  PubMed  Google Scholar 

  129. Forbes, J. G. The atmosphere of the underground electric railways of London: a study of its bacterial content in 1920. J. Hyg. 22, 123–155 (1923).

    CAS  PubMed  Google Scholar 

  130. Luckiesh, M., Taylor, A. H. & Holladay, L. L. Sampling devices for air-borne bacteria. J. Bacteriol. 52, 55–65 (1946).

    PubMed  PubMed Central  Google Scholar 

  131. Williams, R. E. O. & Hirch, A. The detection of streptococci in air. J. Hyg. 48, 504–524 (1950).

    CAS  PubMed  Google Scholar 

  132. Williams, R. E. O., Lidwell, O. M. & Hirch, A. The bacterial flora of the air of occupied rooms. J. Hyg. 54, 512–523 (1956).

    PubMed  Google Scholar 

  133. Reid, D. D., Lidwell, O. M. & Williams, R. E. O. Counts of air-borne bacteria as indices of air hygiene. J. Hyg. 54, 524–532 (1956).

    PubMed  Google Scholar 

  134. Swaebly, M. A. & Christensen, C. M. Molds in house dust, furniture stuffing, and in the air within homes. J. Allergy 23, 370–374 (1952).

    CAS  PubMed  Google Scholar 

  135. Buchbinder, L., Solowey, M. & Solotorovsky, M. Alpha hemolytic streptococci of air: their variant forms, origin and numbers per cubic foot of air in several types of locations. Am. J. Publ. Health Nat. Health 28, 61–71 (1938).

    CAS  Google Scholar 

  136. Christensen, C. M. Intramural dissemination of spores of Hormodendrum resinae. J. Allergy 21, 409–413 (1950).

    CAS  PubMed  Google Scholar 

  137. Lidwell, O. M. & Lowbury, E. J. The survival of bacteria in dust. I. The distribution of bacteria in floor dust. J. Hyg. 48, 6–20 (1950).

    CAS  PubMed  Google Scholar 

  138. Caplan, H. Observations on the role of hospital blankets as reservoirs of infection. J. Hyg. 60, 401–410 (1962).

    CAS  PubMed  Google Scholar 

  139. Lidwell, O. M. & Lowbury, E. J. The survival of bacteria in dust. II. The effect of atmospheric humidity on the survival of bacteria in dust. J. Hyg. 48, 21–27 (1950).

    CAS  PubMed  Google Scholar 

  140. Lidwell, O. M. & Lowbury, E. J. The survival of bacteria in dust. III. The effect of light on the survival of bacteria in dust. J. Hyg. 48, 28–37 (1950).

    CAS  PubMed  Google Scholar 

  141. Wright, J., Cruickshank, R. & Gunn, W. Control of dust-borne streptococcal infection in measles wards. Br. Med. J. 1, 611–614 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Nash, T. Physical aspects of air disinfection. J. Hyg. 49, 382–399 (1951).

    CAS  PubMed  Google Scholar 

  143. Hollaender, A. Ultra-violet irradiation as a means of disinfection of air. Am. J. Publ. Health Nat. Health 33, 980–984 (1943).

    CAS  Google Scholar 

  144. Lidwell, O. M. & Lowbury, E. J. The survival of bacteria in dust. IV. Atmospheric humidity and the bactericidal action of ultra-violet irradiation. J. Hyg. 48, 38–43 (1950).

    CAS  PubMed  Google Scholar 

  145. Schaffer, N., Seidmon, E. E. & Bruskin, S. The clinical evaluation of air-borne and house dust fungi in New Jersey. J. Allergy 24, 348–354 (1953).

    CAS  PubMed  Google Scholar 

  146. Maunsell, K. Air-borne fungal spores before and after raising dust; sampling by sedimentation. Int. Arch. Allergy Appl. Immunol. 3, 93–102 (1952).

    CAS  PubMed  Google Scholar 

  147. Maunsell, K. Concentration of airborne spores in dwellings under normal conditions and under repair. Int. Arch. Allergy Appl. Immunol. 5, 373–376 (1954).

    CAS  PubMed  Google Scholar 

  148. Winslow, C. E. & Robinson, E. A. An Investigation of the extent of the bacterial pollution of the atmosphere by mouth-spray. Am. J. Publ. Hyg. 20, 566–569 (1910).

    CAS  Google Scholar 

  149. Du Buy, H., Arnold, F. A. & Olson, B. J. Studies on the air transmission of micro-organisms derived from the respiratory tract: Lactobacillus acidophilus as a test organism. Publ. Health Rep. 62, 1391–1413 (1947).

    Google Scholar 

  150. Bourdillon, R. B. & Lidwell, O. M. Sneezing and the spread of infection. Lancet 238, 365–367 (1941).

    Google Scholar 

  151. Hart, D. Role of the respiratory tract in contamination of air: a comparative study. Arch. Surg. 38, 788 (1939).

    Google Scholar 

  152. Torrey, J. C. & Lake, M. Streptococci in air as an indicator of nasopharyngeal contamination. JAMA 117, 1425 (1941).

    Google Scholar 

  153. Wells, W. F. On air-borne infection. Study II. droplets and droplet nuclei. Am. J. Epidemiol. 20, 611–618 (1934). This is a seminal study on the method of disease transmission by small and large droplets expelled by humans.

    Google Scholar 

  154. Acheson, F. & Hewitt, D. Spread of influenza in a factory. Br. J. Soc. Med. 6, 68–75 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Moschandreas, D. J., Pagilla, K. R. & Storino, L. V. Time and space uniformity of indoor bacteria concentrations in Chicago area residences. Aerosol. Sci. Technol. 37, 899–906 (2003).

    CAS  Google Scholar 

  156. Tsai, F. C. & Macher, J. M. Concentrations of airborne culturable bacteria in 100 large US office buildings from the BASE study. Indoor Air 15, 71–81 (2005).

    PubMed  Google Scholar 

  157. Reponen, T., Nevalainen, A. & Raunemaa, T. Bioaerosol and particle mass levels and ventilation in finnish homes. Environ. Int. 15, 203–208 (1989).

    CAS  Google Scholar 

  158. Kodama, A. M. & McGee, R. I. Airborne microbial contaminants in indoor environments. naturally ventilated and air-conditioned homes. Arch. Environ. Health Int. J. 41, 306–311 (1986).

    CAS  Google Scholar 

  159. Burger, H. Bioaerosols: prevalence and health effects in the indoor environment. J. Allergy Clin. Immunol. 86, 687–701 (1990).

    Google Scholar 

  160. Kaeberlein, T. Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

    CAS  PubMed  Google Scholar 

  161. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    CAS  PubMed  Google Scholar 

  162. Pace, N. R. A. Molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    CAS  PubMed  Google Scholar 

  163. Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Jackrel, S. L., Owens, S. M., Gilbert, J. A. & Pfister, C. A. Identifying the plant-associated microbiome across aquatic and terrestrial environments: the effects of amplification method on taxa discovery. Mol. Ecol. Resour. 17, 931–942 (2017).

    CAS  PubMed  Google Scholar 

  165. Hatzenpichler, R. & Orphan, V. J. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J., Timmis, K. N. & Nogales, B.) 145–157 (Springer, Berlin, 2015)

  166. Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

    CAS  PubMed  Google Scholar 

  167. Cardona, C., Weisenhorn, P., Henry, C. & Gilbert, J. A. Network-based metabolic analysis and microbial community modeling. Curr. Opin. Microbiol. 31, 124–131 (2016).

    CAS  PubMed  Google Scholar 

  168. Committee on Microbiomes of the Built Environment. Microbiomes of the Built Environment: A Research Agenda for Indoor Microbiology, Human Health, and Buildings (National Academies Press, 2017).

Download references

Acknowledgements

J.A.G. and B.S. acknowledge funding from the Alfred P. Sloan Foundation (060115). J.A.G. acknowledges S. Lax, C. Cardona and A. Sharma for their help in compiling references and for education about aspects of specific research elements.

Reviewer information

Nature Reviews Microbiology thanks R. Adams, M. Hernandez and M. Täubel for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.A.G. and B.S. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jack A. Gilbert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PROBIOM — Towards a health-promoting indoor microbiome: https://www.researchgate.net/project/PROBIOM-Towards-a-health-promoting-indoor-microbiome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, J.A., Stephens, B. Microbiology of the built environment. Nat Rev Microbiol 16, 661–670 (2018). https://doi.org/10.1038/s41579-018-0065-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0065-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing