Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility

Abstract

The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut–brain axis.

Key points

  • In vertebrates, the enteric nervous system (ENS) is critical for gastrointestinal function.

  • There has been much progress in understanding the mechanisms by which mechanical or chemical stimulation of the gut is converted into neural activity within the ENS and propulsive motility.

  • Mechanosensory elements critical for distension-evoked colonic peristalsis have been identified to lie in the myenteric plexus and/or circular muscle of the gastrointestinal tract and do not require the mucosa or submucosal plexus.

  • Evidence suggests that substances released from cells in the mucosa (such as enteroendocrine cells) can modulate ENS activity, but the release of mediators like serotonin is not required for distension-evoked peristalsis or for colonic migrating motor complexes.

  • Fundamental differences have been revealed in the mechanisms of activation of extrinsic spinal afferent nerves compared with those of intrinsic sensory nerves in the same region of the bowel.

  • Recent refinements in optogenetic technologies now permit the stimulation of specific neurochemical classes of neurons in the ENS to elucidate function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key developments in the enteric nervous system.
Fig. 2: The major extrinsic neural pathways between the ENS and spinal cord and brain.
Fig. 3: Different types of intrinsic sensory neurons and extrinsic sensory nerve endings in the enteric nervous system.
Fig. 4: Possible mechanisms underlying the activation of two major classes of intrinsic sensory neuron in the ENS.
Fig. 5: Major intrinsic neuronal circuits in the large intestine active during neurogenic motor patterns.

Similar content being viewed by others

References

  1. Von Haller, A. A Dissertation on the Sensible and Irritable Parts of Animals (1755), republished in Bulletin of the Institute of the History of Medicine 4, 651–699 (1936).

  2. Kunze, W. A., Bornstein, J. C. & Furness, J. B. Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience 66, 1–4 (1995).

    CAS  PubMed  Google Scholar 

  3. Furness, J. B., Johnson, P. J., Pompolo, S. & Bornstein, J. C. Evidence that enteric motility reflexes can be initiated through entirely intrinsic mechanisms in the guinea-pig small intestine. Neurogastroenterol. Motil. 7, 89–96 (1995).

    CAS  PubMed  Google Scholar 

  4. Trendelenburg, P. Physiologische und pharmakologische Untersuchungen über die Dünndarmperistaltik. Arch. Exp. Pathol. Pharmakol. 81, 55–129 (1917).

    Google Scholar 

  5. Wood, J. D. Electrical activity of the intestine of mice with hereditary megacolon and absence of enteric ganglion cells. Am. J. Dig. Dis. 18, 477–488 (1973).

    CAS  PubMed  Google Scholar 

  6. Costa, M. & Furness, J. B. The peristaltic reflex: an analysis of the nerve pathways and their pharmacology. Naunyn Schmiedeberg’s Arch. Pharmacol. 294, 47–60 (1976).

    CAS  Google Scholar 

  7. Lüderitz, C. Experimentelle untersuchungen uber die Entstehung der darmperistaltik. Arch. Path. Anat. Physiol. Klin. Med. 122, 1–28 (1890).

    Google Scholar 

  8. Lüderitz, C. Das motorische Verhalten des Magens bei Reizung seiner ausseren Flache. Arch. Ges. Physiol. Men. Tiere 49, 158–174 (1891).

    Google Scholar 

  9. Bayliss, W. M. & Starling, E. H. The movements and innervation of the small intestine. J. Physiol. 24, 99–143 (1899).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bartho, L., Holzer, P., Donnerer, J. & Lembeck, F. Evidence for the involvement of substance P in the atropine-resistant peristalsis of the guinea-pig ileum. Neurosci. Lett. 32, 69–74 (1982).

    CAS  PubMed  Google Scholar 

  11. Smith, T. K. & Robertson, W. J. Synchronous movements of the longitudinal and circular muscle during peristalsis in the isolated guinea-pig distal colon. J. Physiol. 506, 563–577 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Spencer, N. J. & Smith, T. K. Simultaneous intracellular recordings from longitudinal and circular muscle during the peristaltic reflex in guinea-pig distal colon. J. Physiol. 533, 787–799 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tonini, M. et al. 5-HT7 receptors modulate peristalsis and accommodation in the guinea pig ileum. Gastroenterology 129, 1557–1566 (2005).

    CAS  PubMed  Google Scholar 

  14. Furness, J. B. The Enteric Nervous System (Blackwell, 2006).

  15. Balasuriya, G. K., Hill-Yardin, E. L., Gershon, M. D. & Bornstein, J. C. A sexually dimorphic effect of cholera toxin: rapid changes in colonic motility mediated via a 5-HT3 receptor-dependent pathway in female C57Bl/6 mice. J. Physiol. 594, 4325–4338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Spencer, N. J., Dinning, P. G., Brookes, S. J. & Costa, M. Insights into the mechanisms underlying colonic motor patterns. J. Physiol. 594, 4099–4116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, H. & Spencer, N. J. in Physiology of the Gastrointestinal Tract 6th edn Vol. 1 Ch. 14 (ed. Said, H. M.) 629–669 (Elsevier/Academic Press, 2018).

  18. Kuizenga, M. H. et al. Neurally mediated propagating discrete clustered contractions superimposed on myogenic ripples in ex vivo segments of human ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G1–G11 (2015).

    CAS  PubMed  Google Scholar 

  19. Spencer, N. J. et al. Characterization of motor patterns in isolated human colon: are there differences in patients with slow-transit constipation? Am. J. Physiol. Gastrointest. Liver Physiol. 302, G34–G43 (2012).

    CAS  PubMed  Google Scholar 

  20. Weakly, J. N. Similarites in synaptic efficacy along multiply innervated twich muscle fibers of the frog: a possible muscle-to-motoneuron interaction. Brain Res. 158, 235–239 (1978).

    CAS  PubMed  Google Scholar 

  21. Bennett, M. R., Burnstock, G. & Holman, M. E. Transmission from perivascular inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J. Physiol. 182, 527–540 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bulbring, E. & Tomita, T. Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J. Physiol. 189, 299–315 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Furness, J. B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81, 87–96 (2000).

    CAS  PubMed  Google Scholar 

  24. Brookes, S. J. Classes of enteric nerve cells in the guinea-pig small intestine. Anat. Rec. 262, 58–70 (2001).

    CAS  PubMed  Google Scholar 

  25. Costa, M., Furness, J. B. & Gibbins, I. L. Chemical coding of enteric neurons. Prog. Brain Res. 68, 217–239 (1986).

    CAS  PubMed  Google Scholar 

  26. Costa, M. et al. Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75, 949–967 (1996).

    CAS  PubMed  Google Scholar 

  27. Brookes, S. J., Song, Z. M., Ramsay, G. A. & Costa, M. Long aboral projections of Dogiel type II, AH neurons within the myenteric plexus of the guinea pig small intestine. J. Neurosci. 15, 4013–4022 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Furness, J. B., Kunze, W. A., Bertrand, P. P., Clerc, N. & Bornstein, J. C. Intrinsic primary afferent neurons of the intestine. Prog. Neurobiol. 54, 1–18 (1998).

    CAS  PubMed  Google Scholar 

  29. Ro, S., Hwang, S. J., Muto, M., Jewett, W. K. & Spencer, N. J. Anatomic modifications in the enteric nervous system of piebald mice and physiological consequences to colonic motor activity. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G710–G718 (2006).

    CAS  PubMed  Google Scholar 

  30. Burnett, A. L. & Diehl, N. A. The nervous system of Hydra. I. Types, distribution and origin of nerve elements. J. Exp. Zool. 157, 217–226 (1964).

    CAS  PubMed  Google Scholar 

  31. Murillo-Rincon, A. P. et al. Spontaneous body contractions are modulated by the microbiome of Hydra. Sci. Rep. 7, 15937 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Obermayr, F., Hotta, R., Enomoto, H. & Young, H. M. Development and developmental disorders of the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol. 10, 43–57 (2013).

    CAS  PubMed  Google Scholar 

  33. Young, H. M. & McKeown, S. J. Motility: Hirschsprung disease–laying down a suitable path. Nat. Rev. Gastroenterol. Hepatol. 13, 7–8 (2016).

    CAS  PubMed  Google Scholar 

  34. Stamp, L. A. et al. Optogenetic demonstration of functional innervation of mouse colon by neurons derived from transplanted neural cells. Gastroenterology 152, 1407–1418 (2017). This paper was the first to demonstrate that light could be used to excite enteric neurons using optogenetics.

    PubMed  Google Scholar 

  35. Hotta, R. et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J. Clin. Invest. 123, 1182–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hetz, S. et al. In vivo transplantation of neurosphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study. PLoS One 9, e93605 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Cooper, J. E. et al. In vivo transplantation of enteric neural crest cells into mouse gut; engraftment, functional integration and long-term safety. PLoS One 11, e0147989 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Metzger, M., Caldwell, C., Barlow, A. J., Burns, A. J. & Thapar, N. Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136, 2214–2225 (2009).

    CAS  PubMed  Google Scholar 

  39. Nishikawa, R. et al. Migration and differentiation of transplanted enteric neural crest-derived cells in murine model of Hirschsprung’s disease. Cytotechnology 67, 661–670 (2015).

    CAS  PubMed  Google Scholar 

  40. Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531, 105–109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McCann, C. J. et al. Transplantation of enteric nervous system stem cells rescues nitric oxide synthase deficient mouse colon. Nat. Commun. 8, 15937 (2017). This exciting in vivo study demonstrated that enteric neural stem cells can be successfully transplanted and integrated into the ENS to restore nitrergic neurons and function in mutant mice genetically deficient in neuronal nitric oxide.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pham, T. D., Gershon, M. D. & Rothman, T. P. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J. Comp. Neurol. 314, 789–798 (1991).

    CAS  PubMed  Google Scholar 

  43. Kulkarni, S. et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc. Natl Acad. Sci. USA 114, E3709–E3718 (2017).

    CAS  PubMed  Google Scholar 

  44. Corpening, J. C., Cantrell, V. A., Deal, K. K. & Southard-Smith, E. M. A Histone2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev. Dyn. 237, 1119–1132 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gianino, S., Grider, J. R., Cresswell, J., Enomoto, H. & Heuckeroth, R. O. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130, 2187–2198 (2003).

    CAS  PubMed  Google Scholar 

  46. Furness, J. B., Kuramoto, H. & Messenger, J. P. Morphological and chemical identification of neurons that project from the colon to the inferior mesenteric ganglia in the guinea-pig. J. Auton. Nerv. Syst. 31, 203–210 (1990).

    CAS  PubMed  Google Scholar 

  47. Rao, M. & Gershon, M. D. Neurogastroenterology: the dynamic cycle of life in the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol. 14, 453–454 (2017).

    PubMed  Google Scholar 

  48. Dickens, E. J., Hirst, G. D. & Tomita, T. Identification of rhythmically active cells in guinea-pig stomach. J. Physiol. 514, 515–531 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Der-Silaphet, T., Malysz, J., Hagel, S., Larry Arsenault, A. & Huizinga, J. D. Interstitial cells of cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology 114, 724–736 (1998).

    CAS  PubMed  Google Scholar 

  50. Ward, S. M., Burns, A. J., Torihashi, S. & Sanders, K. M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–97 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huizinga, J. D. et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349 (1995).

    CAS  PubMed  Google Scholar 

  52. Ward, S. M. et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology 117, 584–594 (1999).

    CAS  PubMed  Google Scholar 

  53. Gershon, M. D. Lessons from genetically engineered animal models. II. Disorders of enteric neuronal development: insights from transgenic mice. Am. J. Physiol. 277, G262–G267 (1999).

    CAS  PubMed  Google Scholar 

  54. Spencer, N. J., Sanders, K. M. & Smith, T. K. Migrating motor complexes do not require electrical slow waves in the mouse small intestine. J. Physiol. 553, 881–893 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ward, S. M. et al. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J. Neurosci. 20, 1393–1403 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Klein, S. et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 4, 1630 (2013).

    PubMed  Google Scholar 

  57. Goyal, R. K. & Chaudhury, A. Mounting evidence against the role of ICC in neurotransmission to smooth muscle in the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G10–G13 (2010).

    CAS  PubMed  Google Scholar 

  58. Goyal, R. K. CrossTalk opposing view: interstitial cells are not involved and physiologically important in neuromuscular transmission in the gut. J. Physiol. 594, 1511–1513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Goyal, R. K. Rebuttal from Raj K Goyal. J. Physiol. 594, 1517 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Zhang, R. X., Wang, X. Y., Chen, D. & Huizinga, J. D. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach. Neurogastroenterol. Motil. 23, e356–e371 (2011).

    PubMed  Google Scholar 

  61. Zhang, Y., Carmichael, S. A., Wang, X. Y., Huizinga, J. D. & Paterson, W. G. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G14–G24 (2010).

    CAS  PubMed  Google Scholar 

  62. Driessen, A. K., Farrell, M. J., Mazzone, S. B. & McGovern, A. E. Multiple neural circuits mediating airway sensations: Recent advances in the neurobiology of the urge-to-cough. Respir. Physiol. Neurobiol. 226, 115–120 (2016).

    PubMed  Google Scholar 

  63. Nishi, S. & North, R. A. Intracellular recording from the myenteric plexus of the guinea-pig ileum. J. Physiol. 231, 471–491 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hirst, G. D., Holman, M. E. & Spence, I. Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J. Physiol. 236, 303–326 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kunze, W. A., Furness, J. B., Bertrand, P. P. & Bornstein, J. C. Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. J. Physiol. 506, 827–842 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bornstein, J. C., Furness, J. B. & Kunze, W. A. Electrophysiological characterization of myenteric neurons: how do classification schemes relate? J. Auton. Nerv. Syst. 48, 1–15 (1994).

    CAS  PubMed  Google Scholar 

  67. Furness, J. B., Robbins, H. L., Xiao, J., Stebbing, M. J. & Nurgali, K. Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res. 317, 1–12 (2004).

    CAS  PubMed  Google Scholar 

  68. Bornstein, J. C., Hendriks, R., Furness, J. B. & Trussell, D. C. Ramifications of the axons of AH-neurons injected with the intracellular marker biocytin in the myenteric plexus of the guinea pig small intestine. J. Comp. Neurol. 314, 437–451 (1991).

    CAS  PubMed  Google Scholar 

  69. Mao, Y., Wang, B. & Kunze, W. Characterization of myenteric sensory neurons in the mouse small intestine. J. Neurophysiol. 96, 998–1010 (2006).

    PubMed  Google Scholar 

  70. Spencer, N. J. & Smith, T. K. Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J. Physiol. 558, 577–596 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Smith, T. K., Spencer, N. J., Hennig, G. W. & Dickson, E. J. Recent advances in enteric neurobiology: mechanosensitive interneurons. Neurogastroenterol. Motil. 19, 869–878 (2007).

    CAS  PubMed  Google Scholar 

  72. Mazzuoli-Weber, G. & Schemann, M. Mechanosensitivity in the enteric nervous system. Front. Cell. Neurosci. 9, 408 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Dogiel, A. S. Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere. Arch. Anat. Physiol. Anat. Abt. 1899, 130–158 (1899).

    Google Scholar 

  74. Mazzuoli, G. & Schemann, M. Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS One 7, e39887 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kugler, E. M. et al. Mechanical stress activates neurites and somata of myenteric neurons. Front. Cell. Neurosci. 9, 342 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Mazzuoli-Weber, G. & Schemann, M. Mechanosensitive enteric neurons in the guinea pig gastric corpus. Front. Cell. Neurosci. 9, 430 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Kugler, E. M. et al. Sensitivity to strain and shear stress of isolated mechanosensitive enteric neurons. Neuroscience 372, 213–224 (2018). This study revealed that shear stress was not an adequate stimulus for activation of mechanosensitive enteric neurons; however, strain was sufficient to activate mechanosensitive enteric neurons.

    CAS  PubMed  Google Scholar 

  78. Kunze, W. A., Clerc, N., Bertrand, P. P. & Furness, J. B. Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J. Physiol. 517, 547–561 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bertrand, P. P., Kunze, W. A., Bornstein, J. C., Furness, J. B. & Smith, M. L. Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am. J. Physiol. 273, G422–G435 (1997).

    CAS  PubMed  Google Scholar 

  80. Smolilo, D. J., Costa, M., Hibberd, T. J., Wattchow, D. A. & Spencer, N. J. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon. J. Comp. Neurol. 526, 1662–1672 (2018).

    CAS  PubMed  Google Scholar 

  81. Crowcroft, P. J., Holman, M. E. & Szurszewski, J. H. Excitatory input from the colon to the inferior mesenteric ganglion. J. Physiol. 208, 19P–20P (1970).

    CAS  PubMed  Google Scholar 

  82. Miller, S. M. & Szurszewski, J. Physiology of prevertebral ganglia. Physiol. Gastrointest. Tract. 19, 795–877 (1994).

    Google Scholar 

  83. Bywater, R. A. Activity following colonic distension in enteric sensory fibres projecting to the inferior mesenteric ganglion in the guinea pig. J. Auton. Nerv. Syst. 46, 19–26 (1994).

    CAS  PubMed  Google Scholar 

  84. Stebbing, M. J. & Bornstein, J. C. Electrophysiological analysis of the convergence of peripheral inputs onto neurons of the coeliac ganglion in the guinea pig. J. Auton. Nerv. Syst. 46, 93–105 (1994).

    CAS  PubMed  Google Scholar 

  85. Miller, S. M. & Szurszewski, J. H. Colonic mechanosensory afferent input to neurons in the mouse superior mesenteric ganglion. Am. J. Physiol. 272, G357–G366 (1997).

    CAS  PubMed  Google Scholar 

  86. Jiang, Z., Dun, N. J. & Karczmar, A. G. Substance P: a putative sensory transmitter in mammalian autonomic ganglia. Science 217, 739–741 (1982).

    CAS  PubMed  Google Scholar 

  87. Kreulen, D. L. & Szurszewski, J. H. Reflex pathways in the abdominal prevertebral ganglia: evidence for a colo-colonic inhibitory reflex. J. Physiol. 295, 21–32 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Miller, S. M. & Szurszewski, J. H. Circumferential, not longitudinal, colonic stretch increases synaptic input to mouse prevertebral ganglion neurons. Am. J. Physiol. Gastrointest. Liver Physiol 285, G1129–G1138 (2003).

    CAS  PubMed  Google Scholar 

  89. Lynn, P., Zagorodnyuk, V., Hennig, G., Costa, M. & Brookes, S. Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J. Physiol. 564, 589–601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. Viscerofugal neurons recorded from guinea-pig colonic nerves after organ culture. Neurogastroenterol. Motil. 24, 1041-e548 (2012).

    CAS  PubMed  Google Scholar 

  91. Miller, S. M. & Szurszewski, J. H. Relationship between colonic motility and cholinergic mechanosensory afferent synaptic input to mouse superior mesenteric ganglion. Neurogastroenterol. Motil. 14, 339–348 (2002).

    CAS  PubMed  Google Scholar 

  92. Lynn, P. A., Olsson, C., Zagorodnyuk, V., Costa, M. & Brookes, S. J. H. Rectal intraganglionic laminar endings are transduction sites of extrinsic mechanoreceptors in the guinea pig rectum. Gastroenterology 125, 786–794 (2003).

    PubMed  Google Scholar 

  93. Spencer, N. J. et al. Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice. Neuroscience 153, 518–534 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zagorodnyuk, V. P., Kyloh, M., Brookes, S. J., Nicholas, S. J. & Spencer, N. J. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G404–G411 (2012).

    CAS  PubMed  Google Scholar 

  95. Zagorodnyuk, V. P., Lynn, P., Costa, M. & Brookes, S. J. Mechanisms of mechanotransduction by specialized low-threshold mechanoreceptors in the guinea pig rectum. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G397–G406 (2005).

    CAS  PubMed  Google Scholar 

  96. Feng, J. et al. Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch. Science 360, 530–533 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 225, 118–129 (2012).

    CAS  PubMed  Google Scholar 

  98. Büllbring, E. & Lin, R. C. The action of 5-hydroxytryptamine (5-HT) on peristalsis. J. Physiol. 138, 12P (1957).

    Google Scholar 

  99. Büllbring, E. & Lin, R. C. The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity. J. Physiol. 140, 381–407 (1958).

    Google Scholar 

  100. Büllbring, E., Lin, R. C. & Schofield, G. An investigation of the peristaltic reflex in relation to anatomical observations. Q. J. Exp. Physiol. Cogn. Med. Sci. 43, 26–43 (1958).

    Google Scholar 

  101. Jin, J. G., Foxx-Orenstein, A. E. & Grider, J. R. Propulsion in guinea pig colon induced by 5-hydroxytryptamine (HT) via 5-HT4 and 5-HT3 receptors. J. Pharmacol. Exp. Ther. 288, 93–97 (1999).

    CAS  PubMed  Google Scholar 

  102. Kadowaki, M., Wade, P. R. & Gershon, M. D. Participation of 5-HT3, 5-HT4, and nicotinic receptors in the peristaltic reflex of guinea pig distal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 271, G849–G857 (1996).

    CAS  Google Scholar 

  103. Heredia, D. J., Dickson, E. J., Bayguinov, P. O., Hennig, G. W. & Smith, T. K. Localized release of serotonin (5-Hydroxytryptamine) by a fecal pellet regulates migrating motor complexes in murine colon. Gastroenterology 136, 1328–1338 (2009).

    CAS  PubMed  Google Scholar 

  104. Yadav, V. K. et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med. 16, 308–312 (2010). This study showed that pharmacological inhibition of the synthesis of 5-HT from enteroendocrine cells did not reduce gastrointestinal transit in conscious mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, Z. et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009 (2011). This study showed that mutation of the gene Tph1 that synthesizes mucosal 5-HT did not reduce gastrointestinal transit in conscious mice but mutation of Tph2 (neuronal 5-HT) did; however, Tph2 mutant mice also had developmental problems in the ENS.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Heredia, D. J. et al. Important role of mucosal serotonin in colonic propulsion and peristaltic reflexes: in vitro analyses in mice lacking tryptophan hydroxylase 1. J. Physiol. 591, 5939–5957 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Vincent, A. D., Wang, X. Y., Parsons, S. P., Khan, W. I. & Huizinga, J. D. Abnormal absorptive colonic motor activity in germ free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G896–G907 (2018).

    CAS  PubMed  Google Scholar 

  108. Bertrand, P. P. Real-time measurement of serotonin release and motility in guinea pig ileum. J. Physiol. 577, 689–704 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Keating, D. J. & Spencer, N. J. Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology 138, 659–670 (2010).

    CAS  PubMed  Google Scholar 

  110. Gwynne, R. M., Clarke, A. J., Furness, J. B. & Bornstein, J. C. Both exogenous 5-HT and endogenous 5-HT, released by fluoxetine, enhance distension evoked propulsion in guinea-pig ileum in vitro. Front. Neurosci. 8, 301 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Tuladhar, B. R., Kaisar, M. & Naylor, R. J. Evidence for a 5-HT3 receptor involvement in the facilitation of peristalsis on mucosal application of 5-HT in the guinea pig isolated ileum. Br. J. Pharmacol. 122, 1174–1178 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Spencer, N. J. et al. Mechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells? Am. J. Physiol. Gastrointest. Liver Physiol. 301, G519–G527 (2011).

    CAS  PubMed  Google Scholar 

  113. Keating, D. J. & Spencer, N. J. What is the role of endogenous gut serotonin in the control of gastrointestinal motility? Pharmacol. Res. 140, 50–55 (2018).

    PubMed  Google Scholar 

  114. Tsuji, S., Anglade, P., Ozaki, T., Sazi, T. & Yokoyama, S. Peristaltic movement evoked in intestinal tube devoid of mucosa and submucosa. Jpn J. Physiol. 42, 363–375 (1992).

    CAS  PubMed  Google Scholar 

  115. Spencer, N. J., Dickson, E. J., Hennig, G. W. & Smith, T. K. Sensory elements within the circular muscle are essential for mechanotransduction of ongoing peristaltic reflex activity in guinea-pig distal colon. J. Physiol. 576, 519–531 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lomax, A. E. et al. Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. J. Auton. Nerv. Syst. 76, 45–61 (1999).

    CAS  PubMed  Google Scholar 

  117. Neunlist, M., Michel, K., Aube, A. C., Galmiche, J. P. & Schemann, M. Projections of excitatory and inhibitory motor neurones to the circular and longitudinal muscle of the guinea pig colon. Cell Tissue Res. 305, 325–330 (2001).

    CAS  PubMed  Google Scholar 

  118. Bertrand, P. P. Real-time detection of serotonin release from enterochromaffin cells of the guinea-pig ileum. Neurogastroenterol. Motil. 16, 511–514 (2004).

    CAS  PubMed  Google Scholar 

  119. Alcaino, C. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl Acad. Sci. USA 115, E7632–E7641 (2018). This study showed that EC cells are mechanosensitive and express the major ion channel Piezo 2.

    CAS  PubMed  Google Scholar 

  120. Baumgartner, H. R. 5-Hydroxytryptamine uptake and release in relation to aggregation of rabbit platelets. J. Physiol. 201, 409–423 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Coates, M. D., Tekin, I., Vrana, K. E. & Mawe, G. M. Review article: the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease. Aliment. Pharmacol. Ther. 46, 569–580 (2017).

    CAS  PubMed  Google Scholar 

  123. Raghupathi, R. et al. Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells. J. Physiol. 591, 5959–5975 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Strege, P. R. et al. Sodium channel NaV1.3 is important for enterochromaffin cell excitability and serotonin release. Sci. Rep. 7, 15650 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Wang, F. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595, 79–91 (2017). This study showed that loss of Piezo 2 led to a loss of responsiveness to mechanical force in EC cells.

    CAS  PubMed  Google Scholar 

  126. Wu, J., Lewis, A. H. & Grandl, J. Touch, tension, and transduction – the function and regulation of Piezo ion channels. Trends Biochem. Sci. 42, 57–71 (2017).

    Google Scholar 

  127. Alcaino, C., Farrugia, G. & Beyder, A. Mechanosensitive Piezo channels in the gastrointestinal tract. Curr. Top. Membr. 79, 219–244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mazzuoli-Weber, G. et al. Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity? Cell Tissue Res. 375, 605–618 (2019).

    CAS  PubMed  Google Scholar 

  129. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018). This study suggests that enteroendocrine cells communicate to the vagal afferent nerve endings via synaptic release of glutamate.

    PubMed  PubMed Central  Google Scholar 

  130. Spencer, N. J., Smith, C. B. & Smith, T. K. Role of muscle tone in peristalsis in guinea-pig small intestine. J. Physiol. 530, 295–306 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Spencer, N. J., Hennig, G. W. & Smith, T. K. A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon. J. Physiol. 545, 629–648 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Spencer, N. J., Hennig, G. W. & Smith, T. K. Stretch-activated neuronal pathways to longitudinal and circular muscle in guinea pig distal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G231–G241 (2003).

    CAS  PubMed  Google Scholar 

  133. Costa, M. et al. New insights into neurogenic cyclic motor activity in the isolated guinea-pig colon. Neurogastroenterol. Motil. 29, 1–13 (2017).

    CAS  PubMed  Google Scholar 

  134. Ellis, M., Chambers, J. D., Gwynne, R. M. & Bornstein, J. C. Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G749–G761 (2013).

    CAS  PubMed  Google Scholar 

  135. Huizinga, J. D. et al. The origin of segmentation motor activity in the intestine. Nat. Commun. 5, 3326 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Gwynne, R. M. & Bornstein, J. C. Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1162–G1172 (2007).

    CAS  PubMed  Google Scholar 

  137. Farthing, M. J. Enterotoxins and the enteric nervous system–a fatal attraction. Int. J. Med. Microbiol. 290, 491–496 (2000).

    CAS  PubMed  Google Scholar 

  138. Lundgren, O. 5-Hydroxytryptamine, enterotoxins, and intestinal fluid secretion. Gastroenterology 115, 1009–1012 (1998).

    CAS  PubMed  Google Scholar 

  139. Vanden Broeck, D., Horvath, C. & De Wolf, M. J. Vibrio cholerae: cholera toxin. Int. J. Biochem. Cell Biol. 39, 1771–1775 (2007).

    CAS  PubMed  Google Scholar 

  140. Fung, C., Ellis, M. & Bornstein, J. C. Luminal cholera toxin alters motility in isolated guinea-pig Jejunum via a pathway independent of 5-HT3 receptors. Front. Neurosci. 4, 162 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Koussoulas, K., Gwynne, R. M., Foong, J. P. P. & Bornstein, J. C. Cholera toxin induces sustained hyperexcitability in myenteric, but not submucosal, AH neurons in guinea pig Jejunum. Front. Physiol. 8, 254 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Neunlist, M., Dobreva, G. & Schemann, M. Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. J. Physiol. 517, 533–546 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wood, J. D. Physiology of the Gastrointestinal Tract. (ed Johnson, L. R.) Vol. 1 Ch. 21, 629–669 (Elsevier, Inc., 2012).

  144. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    CAS  PubMed  Google Scholar 

  145. Galligan, J. J. Pharmacology of synaptic transmission in the enteric nervous system. Curr. Opin. Pharmacol. 2, 623–629 (2002).

    CAS  PubMed  Google Scholar 

  146. Zhou, Y. & Danbolt, N. C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. 121, 799–817 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wood, J. D. in Handbook of Physiology Vol. 2 Physiology of the Gastrointestinal Tract (ed. Said Hamid M.) Ch. 15 361–272 (Academic Press, 2018).

  148. Ren, J., Hu, H. Z., Liu, S., Xia, Y. & Wood, J. D. Glutamate receptors in the enteric nervous system: ionotropic or metabotropic? Neurogastroenterol. Motil. 12, 257–264 (2000).

    CAS  PubMed  Google Scholar 

  149. Swaminathan, M., Hill-Yardin, E. L., Bornstein, J. C. & Foong, J. P. P. Endogenous glutamate excites myenteric calbindin neurons by activating Group I metabotropic glutamate receptors in the mouse colon. Front. Neurosci. 13, 426 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Hu, H. Z. et al. Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J. Physiol. 550, 493–504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gwynne, R. M. & Bornstein, J. C. Electrical stimulation of the mucosa evokes slow EPSPs mediated by NK1 tachykinin receptors and by P2Y1 purinoceptors in different myenteric neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G179–G186 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Monro, R. L., Bertrand, P. P. & Bornstein, J. C. ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum. J. Physiol. 556, 571–584 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gwynne, R. M. & Bornstein, J. C. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr. Neuropharmacol. 5, 1–17 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Monro, R. L., Bornstein, J. C. & Bertrand, P. P. Slow excitatory post-synaptic potentials in myenteric AH neurons of the guinea-pig ileum are reduced by the 5-hydroxytryptamine7 receptor antagonist SB 269970. Neuroscience 134, 975–986 (2005).

    CAS  PubMed  Google Scholar 

  155. Crist, J. R., He, X. D. & Goyal, R. K. Both ATP and the peptide VIP are inhibitory neurotransmitters in guinea-pig ileum circular muscle. J. Physiol. 447, 119–131 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Mutafova-Yambolieva, V. N. et al. Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc. Natl Acad. Sci. USA 104, 16359–16364 (2007).

    CAS  PubMed  Google Scholar 

  157. Mutafova-Yambolieva, V. N. & Sanders, K. M. Appropriate experimental approach is critical for identifying neurotransmitter substances: application to enteric purinergic neurotransmission. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G608–G609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, G. D. et al. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G955–G963 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Wood, J. D. Response to Mutafova-Yambolieva and Sanders. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G610–G611 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bornstein, J. C., Costa, M. & Furness, J. B. Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guinea-pig small intestine. J. Physiol. 381, 465–482 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Reed, D. E. & Vanner, S. J. Converging and diverging cholinergic inputs from submucosal neurons amplify activity of secretomotor neurons in guinea-pig ileal submucosa. Neuroscience 107, 685–696 (2001).

    CAS  PubMed  Google Scholar 

  162. Foong, J. P., Parry, L. J., Gwynne, R. M. & Bornstein, J. C. 5-HT1A, SST1, and SST2 receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G384–G394 (2010).

    CAS  PubMed  Google Scholar 

  163. Koussoulas, K., Swaminathan, M., Fung, C., Bornstein, J. C. & Foong, J. P. P. Neurally released GABA Acts via GABAC receptors to modulate Ca2+ transients evoked by trains of synaptic inputs, but not responses evoked by single stimuli, in myenteric neurons of mouse ileum. Front. Physiol. 9, 97 (2018).

    PubMed  PubMed Central  Google Scholar 

  164. Sang, Q. & Young, H. M. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat. Rec. 251, 185–199 (1998).

    CAS  PubMed  Google Scholar 

  165. Tonini, M., Frigo, G., Lecchini, S., D’Angelo, L. & Crema, A. Hyoscine-resistant peristalsis in guinea-pig ileum. Eur. J. Pharmacol. 71, 375–381 (1981).

    CAS  PubMed  Google Scholar 

  166. Tonini, M., Costa, M., Brookes, S. J. & Humphreys, C. M. Dissociation of the ascending excitatory reflex from peristalsis in the guinea-pig small intestine. Neuroscience 73, 287–297 (1996).

    CAS  PubMed  Google Scholar 

  167. Costa, M. et al. Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G749–G759 (2013).

    CAS  PubMed  Google Scholar 

  168. Costa, M. et al. Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon. Neurogastroenterol. Motil. 27, 1466–1477 (2015).

    CAS  PubMed  Google Scholar 

  169. Lasrado, R. et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 356, 722–726 (2017). This study used single-cell transcriptomics and mutagenesis to provide major insights into how the ENS develops. An overlap in expression of regulatory programmes determines cell fates, where developing neurons are organized by clonal lineages.

    CAS  PubMed  Google Scholar 

  170. Spencer, N. J. et al. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle. J. Neurosci. 38, 5507–5522 (2018). This study showed that the ENS generates a rhythmic firing pattern that generates rhythmic electrical activity in colonic smooth muscle that underlies propulsion of content.

    CAS  PubMed  Google Scholar 

  171. Li, Z. et al. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. eLife 8, e42914 (2019). This study showed that there are regional differences in the intrinsic neuronal wiring patterns between the proximal and distal region of the colon.

    PubMed  PubMed Central  Google Scholar 

  172. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  173. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    CAS  PubMed  Google Scholar 

  174. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Hibberd, T. J. et al. Optogenetic induction of colonic motility in mice. Gastroenterology 155, 514–528 (2018). This study demonstrated that wireless optogenetics can be used to stimulate the ENS and increase colonic transit in conscious, freely moving animals.

    PubMed  PubMed Central  Google Scholar 

  176. Boesmans, W., Hao, M. M. & Vanden Berghe, P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 15, 21–38 (2018).

    PubMed  Google Scholar 

  177. Perez-Medina, A. L. & Galligan, J. J. Optogenetic analysis of neuromuscular transmission in the colon of ChAT-ChR2-YFP BAC transgenic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G569–G579 (2019).

    PubMed  Google Scholar 

  178. Spencer, N. J., Hibberd, T., Feng, J. & Hu, H. Optogenetic control of the enteric nervous system and gastrointestinal transit. Expert Rev. Gastroenterol. Hepatol. 13, 281–284 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019). This study showed that even very small changes in temperature (as occurs when using optogenetics) can change the behaviour of conscious animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32, 274–278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cannon, W. B. The movements of the stomach studied by means of the Roetgen rays. Am. J. Physiol. 1, 359–382 (1898).

    Google Scholar 

  182. Legros and Onimus. Recherches experimentales sur les mouvements de l’intestine. J. de l’Anat. et Physiol. 37–66 (1869).

  183. Langley, J. N. in Textbook of Physiology (ed. Schaffer, E. A.) 616–696 (Pentland, 1900).

Download references

Acknowledgements

H.H. was supported by grants from the NIH, R01GM101218, R01DK103901 and R01AA027065, Washington University School of Medicine Digestive Disease Research Core Center (NIDDK P30 DK052574), The Center for the Study of Itch of the Department of Anaesthesiology at Washington University School of Medicine. N.J.S. is supported by NH&MRC of Australia, grants APP1156427 and APP1156416.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Nick J. Spencer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks J. Bornstein, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer, N.J., Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 17, 338–351 (2020). https://doi.org/10.1038/s41575-020-0271-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-0271-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing