Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Deep brain stimulation of the “medial forebrain bundle”: a strategy to modulate the reward system and manage treatment-resistant depression

Abstract

The medial forebrain bundle—a white matter pathway projecting from the ventral tegmental area—is a structure that has been under a lot of scrutinies recently due to its implications in the modulation of certain affective disorders such as major depression. In the following, we will discuss major depression in the context of being a disorder dependent on multiple relevant networks, the pathological performance of which is responsible for the manifestation of various symptoms of the disease which extend into emotional, motivational, physiological, and also cognitive domains of daily living. We will focus on the reward system, an evolutionarily conserved pathway whose underperformance leads to anhedonia and lack of motivation, which are key traits in depression. In the field of deep brain stimulation (DBS), different “hypothesis-driven” targets have been chosen as the subject of clinical trials on efficacy in the treatment-resistant depressed patient. The “medial forebrain bundle” is one such target for DBS, and has had remarkably rapid success in alleviating depressive symptoms, improving anhedonia and motivation. We will review what we have learned from pre-clinical animal studies on defining this white matter tract, its connectivity, and the complex molecular (i.e., neurotransmitter) mechanisms by which its modulation exerts its effects. Imaging studies in the form of tractographic depictions have elucidated its presence in the human brain. Such has led to ongoing clinical trials of DBS targeting this pathway to assess efficacy, which is promising yet still lack in sufficient numbers. Ultimately, one must confirm the mechanism of action and validate proof of antidepressant effect in order to have such treatment become mainstream, to promote widespread improvement in the quality of life of suffering patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targets used in DBS for TRD.
Fig. 2: VTA-NAc reward circuit.
Fig. 3: Illustration of the slMFB/VTApp.

Similar content being viewed by others

References

  1. Coenen VA, Schlaepfer TE, Sajonz B, Döbrössy M, Kaller CP, Urbach H, et al. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal Organ Netw Relevant Psychiatr Disord Neuroimage Clin. 2020;25:102165.

    Google Scholar 

  2. Schlaepfer TE, Bewernick BH, Kayser S, Mädler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychol. 2013;73:1204–12.

    Article  Google Scholar 

  3. Fenoy AJ, Schulz PE, Selvaraj S, Burrows CL, Zunta-Soares G, Durkin K, et al. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression. Transl Psychiatry. 2018;8:111.

    Article  PubMed  PubMed Central  Google Scholar 

  4. DiLuca M, Olesen J. The cost of brain diseases: a burden or a challenge? Neuron. 2014;82:1205–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sussman M, O’sullivan AK, Sha A, Olfson M, Menzin J. Economic burden of treatment-resistant depression on the U.S. health care system. J Manag Care Spec Pharm. 2019;25:823–35.

    PubMed  Google Scholar 

  6. WHO. Depression: fact sheet. Geneva: World Health Organisation; 2017. http://www.who.int/mediacentre/factsheets/fs369/en/.

  7. Rush AJ, Trivedi MH, Stewart JW, Nierenberg AA, Fava M, Kurian BT, et al. Combining medications to enhance depression outcomes (CO-MED): acute and long-term outcomes of a single-blind randomized study. Am J Psychiatry. 2011;168:689–701.

    Article  PubMed  Google Scholar 

  8. Ruhe HG, van Rooijen G, Spijker J, Peeters FPML, Shene AH. Staging methods for treatment resistant depression. A systematic review. J Affect Disord. 2012;137:35–45.

    Article  PubMed  Google Scholar 

  9. Rush AJ. Star-D: what have we learned? Am J Psychiatry. 2007;164:201–4.

    Article  PubMed  Google Scholar 

  10. Rush AJ. Star-D: lessons learned and future implications. Depress Anxiety. 2011;28:521–4.

    Article  PubMed  Google Scholar 

  11. Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry. 2016;3:472–80.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    Article  CAS  PubMed  Google Scholar 

  13. Akil H, Gordon J, Hen R, Javitch J, Mayberg H, Ewen B, et al. Treatment resistant depression: a multi-scale, systems biology approach. Neurosci Biobehav Rev. 2018;84:272–88.

    Article  PubMed  Google Scholar 

  14. Coenen VA, Schlaepfer TE, Maedler B, Panksepp J. Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev. 2011;35:1971–81.

    Article  PubMed  Google Scholar 

  15. Coenen VA, Madler B, Schlaepfer TE. Reply to: medial forebrain bundle stimulation—speed access to an old or entry into a new depression neurocircuit? Biol Psychol. 2013;74:e45–6.

    Article  Google Scholar 

  16. Castro DC, Berridge KC. Advances in the neurobiological bases for food “liking” versus “wanting”. Physiol Behav. 2014;136:22–30. Sep.

    Article  CAS  PubMed  Google Scholar 

  17. Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015;86:646–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Döbrössy MD, Furlanetti LL, Coenen VA. Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders. Neurosci Biobehav Rev. 2015;49:32–42.

    Article  PubMed  Google Scholar 

  19. Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J Psychiatry. 2017;27:101–11.

    Article  Google Scholar 

  20. Disner SG, Beever CG, Haig EA, Beck A. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12:467–77.

    Article  CAS  PubMed  Google Scholar 

  21. Li BJ, Friston K, Mody M, Wang HN. A brain network model for depression: from symptom understanding to disease intervention. CNS Neurosci Ther. 2018;24:1004–19.

  22. Panksepp J, Wright JS. An evolutionary framework to understand foraging, wanting, and desire: the neuropsychology of the seeking system. Neuropsychoanalysis. 2012;14:59–75.

    Article  Google Scholar 

  23. Alves-Pinto A, Rus OG, Reess TJ, Wohlschlager A, Wagner G, Berberich G, et al. Altered reward-related effective connectivity in obsessive-compulsive disorder: an fMRI study. J Psychiatry Neurosci. 2019;44:1–12.

    Article  Google Scholar 

  24. Coenen VA, Schlaepfer TE, Goll P, Reinacher PC, Voderholzer U, Terbartz van Elst L, et al. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectr. 2016;493:1–8.

    Google Scholar 

  25. Keren H, O’Callaghan G, Vidal-Ribas P, Buzzell GA, Brotman MA, Leibenluft E, et al. Reward processing in depression: a conceptual and meta-analytic review across FMRI and EEG studies. Am. J. Psychiatry. 2018;175:1111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Anisman H, Matheson K. Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev. 2005;29:525–46.

    Article  PubMed  Google Scholar 

  27. Blood AJ, Iosifescu DV, Makris N, Perlis RH, Kennedy DN, Dougherty DD, et al. Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder. PLoS ONE. 2010;5:e13945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.

    Article  CAS  Google Scholar 

  29. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    Article  CAS  PubMed  Google Scholar 

  30. Schlaepfer TE, Bewernick BH, Kayser S, Hurlemann R, Coenen VA. Deep brain stimulation of the human reward system for major depression–rationale, outcomes and outlook. Neuropsychopharmacology. 2014;39:1303–14.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abler B, Greenhouse I, Ongur D, Walter H, Heckers S. Abnormal reward system activation in mania. Neuropsychopharmacology. 2008;33:2217–27.

    Article  CAS  PubMed  Google Scholar 

  32. Coenen VA, Honey CR, Hurwitz T, Rahman AA, Mcmaster J, Bürgel U, et al. Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurosurgery. 2009;64:1106–14.

    Article  PubMed  Google Scholar 

  33. Dichter GS, Kozink RV, McClernon FJ, Smoski MJ. Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. J Affect Disord. 2012;136:1126–34.

    Article  PubMed  Google Scholar 

  34. Öhman A, Carlsson K, Lundqvist D. On the unconscious subcortical origin of human fear. J Phys Behav. 2007;92:180–5.

    Article  Google Scholar 

  35. Gross CT. The many paths to fear. Nat Rev Neurosci. 2012;13:651–8. Sep.

    Article  CAS  PubMed  Google Scholar 

  36. Motta SC, Carobrez AP, Canteras NS. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev. 2017;76:39–47. May(Pt A).

    Article  PubMed  Google Scholar 

  37. Panksepp J. Feeling the pain of social loss. Science. 2003;302:237–9.

    Article  CAS  PubMed  Google Scholar 

  38. Eisenberger NI, Lieberman MD, Williams KD. Does rejection hurt? An FMRI study of social exclusion. Science. 2003;302:290–2.

    Article  CAS  Google Scholar 

  39. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  40. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology. 2006;31:2384–93.

    Article  PubMed  Google Scholar 

  41. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    Article  CAS  PubMed  Google Scholar 

  42. Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM. The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry. 2011;69:301–8.

    Article  PubMed  Google Scholar 

  43. Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386:824–7.

    Article  CAS  PubMed  Google Scholar 

  44. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64:461–7.

    Article  PubMed  Google Scholar 

  45. Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA, McClintock S, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4:839–49.

    Article  PubMed  Google Scholar 

  46. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for sub- callosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychol. 2017;62:10.

    Google Scholar 

  47. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75. Feb 15.

    Article  PubMed  Google Scholar 

  48. Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, O’Reardon JP, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry. 2015;78:240–8. Aug 15.

    Article  PubMed  Google Scholar 

  49. Bergfeld IO, Mantione M, Hoogendoorn ML, Ruhé HG, Notten P, van Laarhoven J, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2016;73:456–64. May 1.

    Article  PubMed  Google Scholar 

  50. Bewernick BH, Kayser S, Sturm V, Schlaepfer TE. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology. 2012;37:1975–85. Aug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fitzgerald PB, Segrave R, Richardson KE, Knox LA, Herring S, Daskalakis ZJ, et al. A pilot study of bed nucleus of the stria terminalis deep brain stimulation in treatment resistant depression. Brain Stimul. 2018;11:921–8. Jul-Aug.

    Article  PubMed  Google Scholar 

  52. Raymaekers S, Luyten L, Bervoets C, Gabriëls L, Nuttin B. Deep brain stimulation for treatment-resistant major depressive disorder: a comparison of two targets and long-term follow-up. Transl Psychiatry. 2017;7:e1251. Oct 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee DJ, Dallapiazza RF, De Vloo P, Elias GJB, Fomenko A, Boutet A, et al. Inferior thalamic peduncle deep brain stimulation for treatment-refractory obsessive-compulsive disorder: a phase 1 pilot trial. Brain Stimul. 2019;12:344–52. Mar-Apr.

    Article  PubMed  Google Scholar 

  54. Jiménez F, Nicolini H, Lozano AM, Piedimonte F, Salín R, Velasco F. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. World Neurosurg. 2013;80:e17–25. Sep-OctS30.

    Article  Google Scholar 

  55. Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 2010;67:e9–e11.

    Article  PubMed  Google Scholar 

  56. Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in psychiatric disorders: experimental and clinical evidence for reward and motivation network deep brain stimulation: focus on the medial forebrain bundle. Eur J Neurosci. 2020; 15. https://doi.org/10.1111/ejn.14975.

  57. Nieuwenhuys R, Geeraedts LMG, Veening JG. The medial forebrain bundle of the rat. I. General Introduction. J Comp Neurol. 1982;206:49–81.

    Article  CAS  PubMed  Google Scholar 

  58. Nieuwenhuys R. The greater limbic system, the emotional motor system and the brain. Prog Brain Res. 1996;107:551–80.

    Article  CAS  PubMed  Google Scholar 

  59. Lammel S, Lim BK, Malenka RC. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology. 2014;76:351–9. JanPt B(0 0).

    Article  CAS  PubMed  Google Scholar 

  60. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53.

    Article  PubMed  Google Scholar 

  61. Ikemoto S, Wise RA. Rewarding effects of the cholinergic agents carbachol and neostigmine in the posterior ventral tegmental area. J Neurosci. 2002;22:9895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharp C, Monterosso J, Montague PR. Neuroeconomics: a bridge for translational research. Biol Psychiatry. 2012;72:87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sesack SR, Grace AA. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35:27–47.

    Article  PubMed  Google Scholar 

  64. Ikemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev. 1999;31:6–41.

    Article  CAS  PubMed  Google Scholar 

  65. Alcaro A, Panksepp J. The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neurosci Biobehav Rev. 2011;35:1805–20.

    Article  PubMed  Google Scholar 

  66. Panksepp, J. Affective neuroscience: the foundations of human and animal emotions. New York: Oxford University Press; 1998.

  67. Wise A, McDevitt RA. Drive and reinforcement circuitry in the brain: origins, neurotransmitters, and projection fields. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2018;43:680–9.

    Article  Google Scholar 

  68. Heshmati M, Russo SJ. Anhedonia and the brain reward circuitry in depression. Curr Behav Neurosci Rep. 2015;2:146–53.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron. 2011;72:721–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tan KR, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron. 2012;73:1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Leca L, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron. 2012;73:1184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–41.

    Article  CAS  PubMed  Google Scholar 

  74. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    Article  CAS  PubMed  Google Scholar 

  75. Olds J, Milner, P. Positive reinforcement produced by electrical stimulation of the septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–27.

    Article  CAS  PubMed  Google Scholar 

  76. Furlanetti LL, Coenen VA, Aranda IA, Döbrössy MD. Chronic deep brain stimulation of the medial forebrain bundle reverses depressive-like behavior in a hemiparkinsonian rodent model. Exp Brain Res. 2015;233:3073–85.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Thiele S, Furlanetti L, Pfeiffer L-M, Coenen VA, Döbrössy MD. The effects of bilateral, continuous, and chronic deep brain stimulation of the medial forebrain bundle in a rodent model of depression. Exp Neurol. 2018;303:153–61.

    Article  PubMed  Google Scholar 

  78. Edemann-Callesen H, Voget M, Empl L, Vogel M, Wieske F, Rummel J, et al. Medial forebrain bundle deep brain stimulation has symptom-specific anti-depressant effects in rats and as opposed to ventromedial prefrontal cortex stimulation interacts with the reward system. Brain Stimul. 2015;8:714–23. Jul-Aug.

    Article  PubMed  Google Scholar 

  79. Dandekar MP, Saxena A, Scaini G, Shin JH, Migut A, Giridharan VV, et al. Medial forebrain bundle deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: the importance of BDNF and inflammatory cytokines. Mol Neurobiol. 2019;56:4364–80.

    Article  CAS  PubMed  Google Scholar 

  80. Dandekar MP, Luse D, Hoffmann C, Cotton P, Peery T, Ruiz C, et al. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle. J Affect Disord. 2017;217:80–88.

    Article  CAS  PubMed  Google Scholar 

  81. Furlanetti LL, Coenen VA, Döbrössy MD. Ventral tegmental area dopaminergic lesion-induced depressive phenotype in the rat is reversed by deep brain stimulation of the medial forebrain bundle. Behav Brain Res. 2016;299:132–40.

    Article  CAS  PubMed  Google Scholar 

  82. Thiele S, Sörensen A, Weis J, Braun F, Meyer PT, Coenen VA, et al. Deep brain stimulation of the medial forebrain bundle in a rodent model of depression: exploring dopaminergic mechanisms with raclopride and Micro-PET. Stereotact. Funct Neurosurg. 2020;98:1–13.

    Google Scholar 

  83. Corbett D, Wise RA. Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study. Brain Res. 1980;185:1–15. Mar 3.

    Article  CAS  PubMed  Google Scholar 

  84. Fibiger HC, LePiane FG, Jakubovic A, Phillips AG. The role of dopamine in intracranial self-stimulation of the ventral tegmental area. J Neurosci. 1987;7:3888–96. Dec.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. German DC, Bowden DM. Catecholamine systems as the neural substrate for intracranial self-stimulation: a hypothesis. Brain Res. 1974;73:381–419. Jun 28.

    Article  CAS  PubMed  Google Scholar 

  86. Nakahara D, Ozaki N, Miura Y, Miura H, Nagatsu T. Increased dopamine and serotonin metabolism in rat nucleus accumbens produced by intracranial self-stimulation of medial forebrain bundle as measured by in vivo microdialysis. Brain Res. 1989;495:178–81. Aug 21.

    Article  CAS  PubMed  Google Scholar 

  87. Bregman T, Reznikov R, Diwan M, Raymond R, Butson CR, Nobrega JN, et al. Antidepressant-like effects of medial forebrain bundle deep brain stimulation in rats are not associated with accumbens dopamine release. Brain Stimul. 2015;8:708–13.

    Article  PubMed  Google Scholar 

  88. Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal Methods. 2019;11:2738–55.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–40.

    Article  PubMed  Google Scholar 

  90. Kringelbach ML, Jenkinson N, Owen SLF, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007;8:623–35.

    Article  CAS  PubMed  Google Scholar 

  91. Phillips PEM, Robinson DL, Stuber GD, Carelli RM, Wightman RM. Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol Med. 2003;79:443–64.

    CAS  PubMed  Google Scholar 

  92. Lohani S, Martig AK, Deisseroth K, Witten IB, Moghaddam B. Dopamine modulation of prefrontal cortex activity is manifold and operates at multiple temporal and spatial scales. Cell Rep. 2019;27:99–114. e6.

    Article  CAS  PubMed  Google Scholar 

  93. Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science. 2004;303:2040–2.

    Article  CAS  PubMed  Google Scholar 

  94. Valenti O, Gill KM, Grace AA. Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur J Neurosci. 2012;35:1312–21.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bunney BS, Walters JR, Roth RH, Aghajanian GK. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther. 1973;185:560–71.

    CAS  PubMed  Google Scholar 

  96. Grace AA, Bunney BS. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons-1. Identif Charact Neurosci. 1983;10:301–15.

    CAS  Google Scholar 

  97. Ewing AG, Bigelow JC, Wightman RM. Direct in vivo monitoring of dopamine released from two striatal compartments in the rat. Science. 1983;221:169–71.

    Article  CAS  PubMed  Google Scholar 

  98. Kuhr WG, Wightman RM, Rebec GV. Dopaminergic neurons: simultaneous measurements of dopamine release and single-unit activity during stimulation of the medial forebrain bundle. Brain Res. 1987;418:122–8.

    Article  CAS  PubMed  Google Scholar 

  99. Kuhr WG, Ewing AG, Caudill WL, Wightman RM. Monitoring the stimulated release of dopamine with in vivo voltammetry. I: characterization of the response observed in the caudate nucleus of the rat. J Neurochem. 1984;43:560–9.

    Article  CAS  PubMed  Google Scholar 

  100. Stamford JA, Kruk ZL, Millar J. Measurement of stimulated dopamine release in the rat by in vivo voltammetry: the influence of stimulus duration on drug responses. Neurosci Lett. 1986;69:70–73.

    Article  CAS  PubMed  Google Scholar 

  101. Stamford JA, Kruk ZL, Millar J. Accommodation of rat nigrostriatal dopamine neurones to high frequency electrical stimulation of the median forebrain bundle: in vivo voltammetric data. Neurosci Lett. 1987;82:172–6.

    Article  CAS  PubMed  Google Scholar 

  102. Gratton A, Hoffer BJ, Gerhardt GA. Effects of electrical stimulation of brain reward sites on release of dopamine in rat: an in vivo electrochemical study. Brain Res Bull. 1988;21:319–24.

    Article  CAS  PubMed  Google Scholar 

  103. Gonon FG. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience. 1988;24:19–28.

    Article  CAS  PubMed  Google Scholar 

  104. Klanker M, Feenstra M, Willuhn I, Denys D. Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release. Neuroscience. 2017;364:82–92.

    Article  CAS  PubMed  Google Scholar 

  105. Howe MW, Tierney PL, Sandberg SG, Phillips PEM, Graybiel AM. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013;500:575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature. 2012;482:85–8. Jan 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matsumoto M, Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature. 2009;459:837–41. Jun 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9. Mar 14.

    Article  CAS  PubMed  Google Scholar 

  109. Waelti P, Dickinson A, Schultz W. Dopamine responses comply with basic assumptions of formal learning theory. Nature. 2001;412:43–8. Jul 5.

    Article  CAS  PubMed  Google Scholar 

  110. Bayer HM, Glimcher PW. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron. 2005;47:129–41. Jul 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Settell ML, Testini P, Cho S, Lee JH, Blaha CD, Jo HJ, et al. Functional circuitry effect of ventral tegmental area deep brain stimulation: imaging and neurochemical evidence of mesocortical and mesolimbic pathway modulation. Front Neurosci. 2017;11:104.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ashouri Vajari D, Ramanathan C, Tong Y, Stieglitz T, Coenen VA, Döbrössy MD. Medial forebrain bundle DBS differentially modulates dopamine release in the nucleus accumbens in a rodent model of depression. Exp Neurol. 2020;327:113224.

    Article  CAS  PubMed  Google Scholar 

  113. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, et al. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016;19:117–26.

    Article  CAS  PubMed  Google Scholar 

  114. Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev. 2010;35:129–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev. 2007;56:27–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324:354–9. PMID:19299587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Taber MT, Das S, Fibiger HC. Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J Neurochem. 1995;65:1407–10. PMID: 7643120.

    Article  CAS  PubMed  Google Scholar 

  118. Karreman M, Westerink BH, Moghaddam B. Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. J Neurochem. 1996;67:601–7.

    Article  CAS  PubMed  Google Scholar 

  119. Helbing C, Brocka M, Scherf T, Lippert MT, Angenstein F. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway. J Cereb Blood Flow Metab. 2016;36:2177–93. Dec.

    Article  CAS  PubMed  Google Scholar 

  120. Schoene-Bake JC, Parpaley Y, Weber B, Panksepp J, Hurwitz TA, Coenen VA. Tractographic analysis of historical lesion surgery for depression. Neuropsychopharmacology. 2010;35:2553–63.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Madler B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci. 2012;24:223–36.

    Article  PubMed  Google Scholar 

  122. Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, et al. The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. NeuroImage Clin. 2018c;18:770–83.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Frankle WG, Laruelle M, Haber SN. Prefrontal cortical projections to the midbrain in primates: evidence for a sparse connection. Neuropsychopharmacology. 2006;31:1627–36.

    Article  CAS  PubMed  Google Scholar 

  124. Greenberg BD, Rauch SL, Haber SN. Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology. 2010;35:317–36.

    Article  PubMed  Google Scholar 

  125. Haynes WIA, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci. 2013;33:4804–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nanda P, Banks GP, Pathak YJ, Sheth SA. Connectivity-based parcellation of the anterior limb of the internal capsule. Hum Brain Mapp. 2017;38:6107–17.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR, et al. Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci. 2018a;38:2106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR, et al. Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci. 2018b;38:2106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J Neurosci. 2011;31:10392–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Makris N, Rathi Y, Mouradian P, Bonmassar G, Papadimitriou G, Ing WI, et al. Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav. 2016;10:1054–67.

  131. Baldermann JC, Melzer C, Zapf A, Kohl S, Timmermann L, Tittgemeyer M, et al. Connectivity profile predictive of effective deep brain stimulation in obsessive compulsive disorder. Biol Psychiatry 2019;85:735–43.

    Article  PubMed  Google Scholar 

  132. Panksepp J. The basic emotional circuits of mammalian brains: do animals have affective lives? Neurosci Biobehav Rev. 2011;35:1791–804.

  133. Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system. A Synopsis and Atlas, Fourth Edition. Heidelberg: Springer; 2008.

  134. Panksepp J. Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn. 2005;14:30–80.

    Article  PubMed  Google Scholar 

  135. Neubert F-X, Mars RB, Sallet J, Rushworth MFS. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc Natl Acad Sci USA 2015;112:E2695–E2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Haber SN, Yendiki A, Jbabdi S. Four deep brain stimulation targets for obsessive-compulsive disorder: Are they different? Biol Psychiatry. 2020;S0006-3223:31773-X. https://doi.org/10.1016/j.biopsych.2020.06.031. Online ahead of print.

  137. Schmahmann J, Pandya D. Fiber pathways of the brain. 1st edition. New York: Oxford University Press;2006.

  138. Gaspar P, Neurology ISOC. Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. Wiley Online Library;1992.

  139. Petersen MV, Mlakar J, Haber SN, Parent M, Smith Y, Strick PL, et al. Holographic reconstruction of axonal pathways in the human brain. Neuron. 2019; 1–16.

  140. Hurwitz TA, Mandat T, Forster B, Honey C. Tract identification by novel MRI signal changes following stereotactic anterior capsulotomy. Stereotact Funct Neurosurg. 2006b;84:228–35.

    Article  CAS  PubMed  Google Scholar 

  141. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.

    Article  CAS  PubMed  Google Scholar 

  142. Bewernick BH, Kayser S, Gippert SM, Switala C, Coenen VA, Schlaepfer TE. Deep brain stimulation to the medial forebrain bundle for depression-long-term outcomes and a novel data analysis strategy. Brain Stimul. 2017;10:664–71.

    Article  PubMed  Google Scholar 

  143. Coenen VA, Bewernick BH, Kayser S, Kilian H, Boström J, Greschus S, et al. Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial. Neuropsychopharmacology. 2019a;26:587.

    Google Scholar 

  144. Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol. 1967;6:278–96.

    Article  CAS  PubMed  Google Scholar 

  145. Jones SH, Thornicroft G, Coffey M, Dunn G. A brief mental health outcome scale-reliability and validity of the Global Assessment of Functioning (GAF). Br J Psychiatry. 1995;166:654–9.

    Article  CAS  PubMed  Google Scholar 

  146. First MB, Spitzer RL, Gibbon M, Williams JBW, Benjamin LS. Structured clinical interview for DSM-IV Axis II personality disorders (SCID II). Washington, DC: American Psychiatric Press;1996.

  147. Millon T, Millon C, Davis R. Millon clinical multiaxial inventory-III (MCMI-III) manual. Minneapolis, MN: National Computer Systems;1994.

  148. Fenoy AJ, Schulz P, Selvaraj S, Burrows C, Spiker D, Cao B, et al. Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J Affect Disord. 2016;203:143–51. Oct 3. PMID: 27288959.

    Article  PubMed  Google Scholar 

  149. Perez-Caballero L, Perez-Egea R, Romero-Grimaldi C, Puigdemont D, Molet J, Caso JR, et al. Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs. Mol Psychiatry. 2014;19:607–14.

    Article  CAS  PubMed  Google Scholar 

  150. Chang SY, Shon YM, Agnesi F, Lee KH. Microthalamotomy effect during deep brain stimulation: potential involvement of adenosine and glutamate efflux. Conf Proc IEEE Eng Med Biol Soc. 2009, 3294–7.

  151. Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014;20:191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Naudet F, Millet B, Reymann JM, Falissard B. Improving study design for anti- depressant effectiveness assessment. Int J Methods Psychiatr Res. 2013;22:217–31.

    PubMed  PubMed Central  Google Scholar 

  153. Schatzberg AF, Kraemer HC. Use of placebo control groups in evaluating efficacy of treatment of unipolar major depression. Biol Psychiatry. 2000;47:736–44.

    Article  CAS  PubMed  Google Scholar 

  154. Kilian HM, Meyer DM, Bewernick BH, Spanier S, Coenen VA, Schlaepfer TE. Discontinuation of superolateral medial forebrain bundle deep brain stimulation for treatment-resistant depression leads to critical relapse. Biol Psychiatry. 2018;S0006-3223:31748–7. Sep 22. pii.

    Google Scholar 

  155. Martín-Blanco A, Serra-Blasco M, Pérez-Egea R, de Diego-Adeliño J, Carceller-Sindreu M, Puigdemont D, et al. Immediate cerebral metabolic changes induced by discontinuation of deep brain stimulation of subcallosal cingulate gyrus in treatment-resistant depression. J Affect Disord. 2015;173:159–62.

    Article  PubMed  Google Scholar 

  156. Evers J, Lowery M. The active electrode in the living brain: the response of the brain parenchyma to chronically implanted deep brain stimulation electrodes. Oper Neurosurg. 2020 Oct 19:opaa326. https://doi.org/10.1093/ons/opaa326.

  157. Vedam-Mai V, Rodgers C, Gureck A, Vincent M, Ippolito G, Elkouzi A, et al. Deep brain stimulation associated gliosis: a post-mortem study. Parkinsonism Relat Disord. 2018;54:51–55. Sep.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ruge D, Cif L, Limousin P, Gonzalez V, Vasques X, Hariz MI, et al. Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. Brain. 2011;134:2106–15.

    Article  PubMed  Google Scholar 

  159. Ruge D, Tisch S, Hariz MI, Zrinzo L, Bhatia KP, Quinn NP, et al. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment. Mov Disord. 2011;26:1913–21.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Sani S, Busnello J, Kochanski R, Cohen Y, Gibbons RD. High-frequency measurement of depressive severity in a patient treated for severe treatment-resistant depression with deep-brain stimulation. Transl Psychiatry. 2017;7:e1207. Aug 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kelley ME, Franco AR, Mayberg HS, Holtzheimer PE. The illness density index (IDI): a longitudinal measure of treatment efficacy. Clin Trials. 2012;9:596e604.

    Article  Google Scholar 

  162. Puigdemont D, Portella M, Perez-Egea R, Molet J, Gironell A, de Diego- Adelino J, et al. A randomized double-blind crossover trial of deep brain stimulation of the subcallosal cingulate gyrus in patients with treatment-resistant depression: a pilot study of relapse prevention. J psychiatry Neurosci JPN. 2015;40:130295.

    Article  Google Scholar 

  163. Lozano AM, Giacobbe P, Hamani C, Rizvi SJ, Kennedy SH, Kolivakis TT, et al. A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. J Neurosurg. 2012;116:315–22.

    Article  PubMed  Google Scholar 

  164. Blomstedt P, Naesström M, Bodlund O. Deep brain stimulation in the bed nucleus of the stria terminalis and medial forebrain bundle in a patient with major depressive disorder and anorexia nervosa. Clin Case Rep. 2017;5:679–84.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Davidson B, Giacobbe P, Mithani K, Levitt A, Rabin JS, Lipsman N, et al. Lack of clinical response to deep brain stimulation of the medial forebrain bundle in depression. Brain Stimul. 2020;13:1268–70.

    Article  PubMed  Google Scholar 

  166. Fenoy A. Challenges in deep brain stimulation for depression. Braz J Psychiatry. 2020;42:347–8. Aug.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Center of Excellence on Mood Disorders is funded by the Pat Rutherford Jr. Chair in Psychiatry, John S. Dunn Foundation, and Anne and Don Fizer Foundation Endowment for Depression Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Fenoy.

Ethics declarations

Conflict of interest

JQ reported no biomedical financial interests or potential conflicts of interest. AJF serves as a consultant for Medtronic, Inc. JCS receives grant/research support from Bristol-Meyers Squibb, Forest Laboratories, Merck and Elan Pharmaceuticals, and serves as a consultant for Pfizer, Abbot, and Astellas Pharma, Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenoy, A.J., Quevedo, J. & Soares, J.C. Deep brain stimulation of the “medial forebrain bundle”: a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 27, 574–592 (2022). https://doi.org/10.1038/s41380-021-01100-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01100-6

This article is cited by

Search

Quick links