Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cleaning up in the endoplasmic reticulum: ubiquitin in charge

Abstract

The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the evolutionarily conserved ER-associated degradation (ERAD) pathway. During ERAD, maturation-defective and surplus polypeptides are evicted from the ER lumen and/or lipid bilayer through the process of retrotranslocation and ultimately degraded by the proteasome. An integral facet of the ERAD mechanism is the ubiquitin system, composed of the ubiquitin modifier and the factors for assembling, processing and binding ubiquitin chains on conjugated substrates. Beyond simply marking polypeptides for degradation, the ubiquitin system is functionally intertwined with retrotranslocation machinery to transport polypeptides across the ER membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct modes of retrotranslocation.
Figure 2: Modular organization of the mammalian ERAD system.

Similar content being viewed by others

References

  1. Brodsky, J.L. & Wojcikiewicz, R.J. Substrate-specific mediators of ER associated degradation (ERAD). Curr. Opin. Cell Biol. 21, 516–521 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hampton, R.Y. ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 14, 476–482 (2002).

    CAS  PubMed  Google Scholar 

  3. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  4. Needham, P.G. & Brodsky, J.L. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim. Biophys. Acta 1833, 2447–2457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lippincott-Schwartz, J., Bonifacino, J.S., Yuan, L.C. & Klausner, R.D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209–220 (1988).Refs. 5 and 6 were the first to demonstrate that unassembled endogenous membrane proteins are rapidly degraded after import into the ER, thus defining a new pathway of protein degradation at the ER.

    CAS  PubMed  Google Scholar 

  6. Bonifacino, J.S., Cosson, P. & Klausner, R.D. Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell 63, 503–513 (1990).

    CAS  PubMed  Google Scholar 

  7. Ward, C.L., Omura, S. & Kopito, R.R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).Refs. 7, 8, 9, 10, 11, 12 demonstrated that ERAD requires the ubiquitin-proteasome system, thus suggesting that the substrates need to be retrotranslocated into the cytosol before degradation.

    CAS  PubMed  Google Scholar 

  8. Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176–179 (1993).

    CAS  PubMed  Google Scholar 

  9. Hiller, M.M., Finger, A., Schweiger, M. & Wolf, D.H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725–1728 (1996).

    CAS  PubMed  Google Scholar 

  10. Hampton, R.Y., Gardner, R.G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jensen, T.J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).

    CAS  PubMed  Google Scholar 

  12. Wiertz, E.J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    CAS  PubMed  Google Scholar 

  13. Tsai, B., Ye, Y. & Rapoport, T.A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol. 3, 246–255 (2002).

    CAS  PubMed  Google Scholar 

  14. Shimizu, Y., Okuda-Shimizu, Y. & Hendershot, L.M. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol. Cell 40, 917–926 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177, 613–624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishikura, S., Weissman, A.M. & Bonifacino, J.S. Serine residues in the cytosolic tail of the T-cell antigen receptor α-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J. Biol. Chem. 285, 23916–23924 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    CAS  PubMed  Google Scholar 

  18. Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell. Mol. Life Sci. 65, 2397–2406 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Veen, A.G. & Ploegh, H.L. Ubiquitin-like proteins. Annu. Rev. Biochem. 81, 323–357 (2012).

    CAS  PubMed  Google Scholar 

  21. Ahner, A. et al. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier–dependent pathway. Mol. Biol. Cell 24, 74–84 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  23. Bays, N.W., Gardner, R.G., Seelig, L.P., Joazeiro, C.A. & Hampton, R.Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3, 24–29 (2001).Refs. 23 and 24 identified the two major ubiquitin ligases involved in ERAD in budding yeast.

    CAS  PubMed  Google Scholar 

  24. Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev. 15, 2660–2674 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stolz, A., Besser, S., Hottmann, H. & Wolf, D.H. Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum–associated protein degradation. Proc. Natl. Acad. Sci. USA 110, 15271–15276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vashist, S. & Ng, D.T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52 (2004).Refs. 26 and 27 elucidated different routes by which distinct classes of misfolded ER proteins are retrotranslocated for degradation.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Carvalho, P., Goder, V. & Rapoport, T.A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    CAS  PubMed  Google Scholar 

  28. Mehnert, M., Sommer, T. & Jarosch, E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 32, 905–913 (2010).

    CAS  PubMed  Google Scholar 

  29. Mueller, B., Klemm, E.J., Spooner, E., Claessen, J.H. & Ploegh, H.L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA 105, 12325–12330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, X. et al. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J. Cell Biol. 187, 655–668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, Z., Du, S. & Fang, S. gp78: a multifaceted ubiquitin ligase that integrates a unique protein degradation pathway from the endoplasmic reticulum. Curr. Protein Pept. Sci. 13, 414–424 (2012).

    CAS  PubMed  Google Scholar 

  32. Bernasconi, R., Galli, C., Calanca, V., Nakajima, T. & Molinari, M. Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. J. Cell Biol. 188, 223–235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Christianson, J.C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 (2012).This paper used a systems-biology approach to construct a complex functional-interaction map of the proteins involved in mammalian ERAD.

    CAS  Google Scholar 

  34. Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    CAS  PubMed  Google Scholar 

  35. Morito, D. et al. Gp78 cooperates with RMA1 in endoplasmic reticulum–associated degradation of CFTRDeltaF508. Mol. Biol. Cell 19, 1328–1336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Komander, D., Clague, M.J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    CAS  PubMed  Google Scholar 

  37. Ernst, R., Mueller, B., Ploegh, H.L. & Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell 36, 28–38 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sowa, M.E., Bennett, E.J., Gygi, S.P. & Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Q., Li, L. & Ye, Y. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J. Cell Biol. 174, 963–971 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ernst, R. et al. Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS Biol. 8, e1000605 (2011).

    PubMed  Google Scholar 

  41. Bernardi, K.M., Williams, J.M., Inoue, T., Schultz, A. & Tsai, B. A deubiquitinase negatively regulates retro-translocation of non-ubiquitinated substrates. Mol. Biol. Cell 24, 3545–3556 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y. et al. USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation. Elife 3, e01369 (2014).This paper reported that a machinery protein in ERAD could be subject to regulation by ubiquitination in a proteasome-independent manner.

    PubMed  PubMed Central  Google Scholar 

  43. Zhang, Z.R., Bonifacino, J.S. & Hegde, R.S. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 154, 609–622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    CAS  PubMed  Google Scholar 

  45. Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).Refs. 45, 46, 47, 48 and 54 demonstrated the involvement of the AAA+ ATPase p97/VCP in ERAD. Ref. 45 also used an in vitro retrotranslocation assay to show that p97/VCP is required to move ubiquitinated ERAD substrates from the membranes to the cytosol for degradation by the proteasome.

    CAS  PubMed  Google Scholar 

  46. Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum–associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 4, 134–139 (2002).

    CAS  PubMed  Google Scholar 

  48. Bays, N.W., Wilhovsky, S.K., Goradia, A., Hodgkiss-Harlow, K. & Hampton, R.Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 12, 4114–4128 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ye, Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J. Struct. Biol. 156, 29–40 (2006).

    CAS  PubMed  Google Scholar 

  50. DeLaBarre, B. & Brunger, A.T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat. Struct. Biol. 10, 856–863 (2003).

    CAS  PubMed  Google Scholar 

  51. Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).

    CAS  PubMed  Google Scholar 

  52. Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

    CAS  PubMed  Google Scholar 

  53. Flierman, D., Ye, Y., Dai, M., Chau, V. & Rapoport, T.A. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. J. Biol. Chem. 278, 34774–34782 (2003).

    CAS  PubMed  Google Scholar 

  54. Ye, Y., Meyer, H.H. & Rapoport, T.A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71–84 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, Y. & Ye, Y. Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum. Curr. Protein Pept. Sci. 13, 436–446 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    CAS  PubMed  Google Scholar 

  57. Garza, R.M., Sato, B.K. & Hampton, R.Y. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J. Biol. Chem. 284, 14710–14722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Raman, M., Havens, C.G., Walter, J.C. & Harper, J.W. A genome-wide screen identifies p97 as an essential regulator of DNA damage–dependent CDT1 destruction. Mol. Cell 44, 72–84 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. DeLaBarre, B., Christianson, J.C., Kopito, R.R. & Brunger, A.T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006).

    CAS  PubMed  Google Scholar 

  60. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    CAS  PubMed  Google Scholar 

  61. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).Refs. 61, 62 and 64 defined the role of a class of UBA- and UBL-containing proteins in targeting retrotranslocated products to the proteasome for degradation.

    CAS  PubMed  Google Scholar 

  62. Verma, R., Oania, R., Graumann, J. & Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004).

    CAS  PubMed  Google Scholar 

  63. Kim, I., Mi, K. & Rao, H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357–3365 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, I. et al. The Png1-Rad23 complex regulates glycoprotein turnover. J. Cell Biol. 172, 211–219 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lim, P.J. et al. Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J. Cell Biol. 187, 201–217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274, 28019–28025 (1999).

    CAS  PubMed  Google Scholar 

  67. Okuda-Shimizu, Y. & Hendershot, L.M. Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Mol. Cell 28, 544–554 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schulze, A. et al. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol. 354, 1021–1027 (2005).

    CAS  PubMed  Google Scholar 

  69. Jo, Y., Sguigna, P.V. & DeBose-Boyd, R.A. Membrane-associated ubiquitin ligase complex containing gp78 mediates sterol-accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 286, 15022–15031 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Q. et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble States for proteasome degradation. Mol. Cell 42, 758–770 (2011).This paper demonstrated the involvement of a multifunctional cytosolic chaperone in maintaining the solubility of retrotranslocated polypeptides, which promotes their turnover in mammalian cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Horn, S.C. et al. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell 36, 782–793 (2009).

    CAS  PubMed  Google Scholar 

  72. Huang, C.H., Chu, Y.R., Ye, Y. & Chen, X. Role of HERP and a HERP-related protein in HRD1-dependent protein degradation at the endoplasmic reticulum. J. Biol. Chem. 289, 4444–4454 (2014).

    CAS  PubMed  Google Scholar 

  73. Xu, Y., Liu, Y., Lee, J.G. & Ye, Y. A ubiquitin-like domain recruits an oligomeric chaperone to a retrotranslocation complex in endoplasmic reticulum-associated degradation. J. Biol. Chem. 288, 18068–18076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu, Y., Cai, M., Yang, Y., Huang, L. & Ye, Y. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep. 2, 1633–1644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Vembar, S.S. & Brodsky, J.L. One step at a time: endoplasmic reticulum–associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shamu, C.E., Story, C.M., Rapoport, T.A. & Ploegh, H.L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol. 147, 45–58 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Burr, M.L. et al. MHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation. Proc. Natl. Acad. Sci. USA 110, 14290–14295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fleig, L. et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 47, 558–569 (2012).

    CAS  PubMed  Google Scholar 

  79. Feige, M.J. & Hendershot, L.M. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol. Cell 51, 297–309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bordallo, J., Plemper, R.K., Finger, A. & Wolf, D.H. Der3p/Hrd1p is required for endoplasmic reticulum–associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sato, B.K., Schulz, D., Do, P.H. & Hampton, R.Y. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 34, 212–222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Carvalho, P., Stanley, A.M. & Rapoport, T.A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143, 579–591 (2010).Refs. 82 and 106 used an elegant in vivo cross-linking approach to characterize the interactions between a retrotranslocation substrate and the Hrd1p ubiquitin-ligase complex. The evidence suggests that Hrd1p and Der1p play essential parts in substrate recognition and/or retrotranslocation.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Klemm, E.J., Spooner, E. & Ploegh, H.L. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 286, 37602–37614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jo, Y., Hartman, I.Z. & DeBose-Boyd, R.A. Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes. Mol. Biol. Cell 24, 169–183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Olzmann, J.A., Richter, C.M. & Kopito, R.R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. USA 110, 1345–1350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ploegh, H.L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435–438 (2007).

    CAS  PubMed  Google Scholar 

  87. Olzmann, J.A. & Kopito, R.R. Lipid droplet formation is dispensable for endoplasmic reticulum–associated degradation. J. Biol. Chem. 286, 27872–27874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Duttler, S., Pechmann, S. & Frydman, J. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50, 379–393 (2013).

    CAS  PubMed  Google Scholar 

  89. Sliter, D.A., Aguiar, M., Gygi, S.P. & Wojcikiewicz, R.J. Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J. Biol. Chem. 286, 1074–1082 (2011).

    CAS  PubMed  Google Scholar 

  90. Li, W., Tu, D., Brunger, A.T. & Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446, 333–337 (2007).

    CAS  PubMed  Google Scholar 

  91. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hampton, R.Y. & Sommer, T. Finding the will and the way of ERAD substrate retrotranslocation. Curr. Opin. Cell Biol. 24, 460–466 (2012).

    CAS  PubMed  Google Scholar 

  93. Wiertz, E.J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).

    CAS  PubMed  Google Scholar 

  94. Scott, D.C. & Schekman, R. Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J. Cell Biol. 181, 1095–1105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pilon, M., Schekman, R. & Romisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540–4548 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou, M. & Schekman, R. The engagement of Sec61p in the ER dislocation process. Mol. Cell 4, 925–934 (1999).

    CAS  PubMed  Google Scholar 

  97. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    CAS  PubMed  Google Scholar 

  98. Greenblatt, E.J., Olzmann, J.A. & Kopito, R.R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 18, 1147–1152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, C.H., Hsiao, H.T., Chu, Y.R., Ye, Y. & Chen, X. Derlin2 protein facilitates HRD1-mediated retro-translocation of sonic hedgehog at the endoplasmic reticulum. J. Biol. Chem. 288, 25330–25339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129, 943–955 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D.H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).Refs. 101, 102 and 105 reported a family of conserved multispanning membrane proteins essential for retrotranslocation of a subset of ERAD substrates.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    CAS  PubMed  Google Scholar 

  103. Kothe, M. et al. Role of p97 AAA-ATPase in the retrotranslocation of the cholera toxin A1 chain, a non-ubiquitinated substrate. J. Biol. Chem. 280, 28127–28132 (2005).

    CAS  PubMed  Google Scholar 

  104. Gauss, R., Sommer, T. & Jarosch, E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J. 25, 1827–1835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lilley, B.N. & Ploegh, H.L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    CAS  PubMed  Google Scholar 

  106. Mehnert, M., Sommer, T. & Jarosch, E. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol. 16, 77–86 (2014).

    CAS  PubMed  Google Scholar 

  107. Gardner, R.G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Foresti, O., Ruggiano, A., Hannibal-Bach, H.K., Ejsing, C.S. & Carvalho, P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife 2, e00953 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Rubenstein, E.M., Kreft, S.G., Greenblatt, W., Swanson, R. & Hochstrasser, M. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. J. Cell Biol. 197, 761–773 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Xu, S., Peng, G., Wang, Y., Fang, S. & Karbowski, M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 22, 291–300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bolte, K. et al. Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays 33, 368–376 (2011).

    CAS  PubMed  Google Scholar 

  112. Barthelme, D. & Sauer, R.T. Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine. Science 337, 843–846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Isakov, E. & Stanhill, A. Stalled proteasomes are directly relieved by P97 recruitment. J. Biol. Chem. 286, 30274–30283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, J.G. & Ye, Y. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. Bioessays 35, 377–385 (2013).

    CAS  PubMed  Google Scholar 

  116. Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ahner, A., Nakatsukasa, K., Zhang, H., Frizzell, R.A. & Brodsky, J.L. Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation. Mol. Biol. Cell 18, 806–814 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Grotzke, J.E., Lu, Q. & Cresswell, P. Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proc. Natl. Acad. Sci. USA 110, 3393–3398 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, X., Yu, Y.Y., Myers, N. & Hansen, T.H. Decoupling the role of ubiquitination for the dislocation versus degradation of major histocompatibility complex (MHC) class I proteins during endoplasmic reticulum-associated degradation (ERAD). J. Biol. Chem. 288, 23295–23306 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhong, Y. & Fang, S. Live cell imaging of protein dislocation from the endoplasmic reticulum. J. Biol. Chem. 287, 28057–28066 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Metzger, M.B. et al. A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Mol. Cell 50, 516–527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kostova, Z., Mariano, J., Scholz, S., Koenig, C. & Weissman, A.M.A. Ubc7p-binding domain in Cue1p activates ER-associated protein degradation. J. Cell Sci. 122, 1374–1381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Das, R. et al. Allosteric activation of E2-RING finger–mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34, 674–685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, W. et al. Mechanistic insights into active site–associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proc. Natl. Acad. Sci. USA 106, 3722–3727 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bagola, K. et al. Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. Mol. Cell 50, 528–539 (2013).

    CAS  PubMed  Google Scholar 

  126. Liu, S. et al. Promiscuous interactions of gp78 E3 ligase CUE domain with polyubiquitin chains. Structure 20, 2138–2150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, B. et al. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl. Acad. Sci. USA 103, 341–346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    CAS  PubMed  Google Scholar 

  129. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K.I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276, 33111–33120 (2001).

    CAS  PubMed  Google Scholar 

  130. Nakatsukasa, K., Huyer, G., Michaelis, S. & Brodsky, J.L. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132, 101–112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M. & Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3, 100–105 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Schulz, E. Fenech, K. Bryon-Dodd (University of Oxford) and J. Olzmann (University of California, Berkeley) for critical reading of the manuscript. Research in the laboratory of Y.Y. is supported by the intramural research program of the NIDDK, US National Institutes of Health. J.C.C. is supported by funding from the Ludwig Institute for Cancer Research and the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christianson, J., Ye, Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 21, 325–335 (2014). https://doi.org/10.1038/nsmb.2793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing