Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex

Abstract

During the priming step that leaves synaptic vesicles ready for neurotransmitter release, the SNARE syntaxin-1 transitions from a closed conformation that binds Munc18-1 tightly to an open conformation within the highly stable SNARE complex. Control of this conformational transition is important for brain function, but the underlying mechanism is unknown. NMR and fluorescence experiments now show that the Munc13-1 MUN domain, which plays a central role in vesicle priming, markedly accelerates the transition from the syntaxin-1–Munc18-1 complex to the SNARE complex. This activity depends on weak interactions of the MUN domain with the syntaxin-1 SNARE motif, and probably with Munc18-1. Together with available physiological data, these results provide a defined molecular basis for synaptic vesicle priming, and they illustrate how weak protein-protein interactions can play crucial biological roles by promoting transitions between high-affinity macromolecular assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Weak interactions can dramatically accelerate transitions between tight complexes.
Figure 2: Formation of MUN*–SNARE complex–Munc18-1 macromolecular assemblies.
Figure 3: MUN* binds to the syntaxin-1 SNARE motif.
Figure 4: The MUN domain accelerates the transition from the syntaxin-1–Munc18-1 complex to the SNARE complex.
Figure 5: MUN* activity depends on interactions with the syntaxin-1 SNARE motif and is bypassed by the syntaxin-1 LE mutation.

Similar content being viewed by others

References

  1. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  Google Scholar 

  2. Brunger, A.T. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys. 38, 1–47 (2005).

    Article  CAS  Google Scholar 

  3. Jahn, R. & Scheller, R.H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  4. Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15, 665–674 (2008).

    Article  CAS  Google Scholar 

  5. Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  Google Scholar 

  6. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  7. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  8. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  9. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).

    Article  CAS  Google Scholar 

  10. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  Google Scholar 

  11. Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404, 355–362 (2000).

    Article  CAS  Google Scholar 

  12. Gerber, S.H. et al. Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321, 1507–1510 (2008).

    Article  CAS  Google Scholar 

  13. Dulubova, I. et al. Munc18–1 binds directly to the neuronal SNARE complex. Proc. Natl. Acad. Sci. USA 104, 2697–2702 (2007).

    Article  CAS  Google Scholar 

  14. Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E. & Melia, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    Article  CAS  Google Scholar 

  15. Khvotchev, M. et al. Dual modes of Munc18–1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. J. Neurosci. 27, 12147–12155 (2007).

    Article  CAS  Google Scholar 

  16. Deák, F. et al. Munc18–1 binding to the neuronal SNARE complex controls synaptic vesicle priming. J. Cell Biol. 184, 751–764 (2009).

    Article  Google Scholar 

  17. Rizo, J., Chen, X. & Arac, D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16, 339–350 (2006).

    Article  CAS  Google Scholar 

  18. Diao, J. et al. Single-vesicle fusion assay reveals Munc18–1 binding to the SNARE core is sufficient for stimulating membrane fusion. ACS Chem. Neurosci. 1, 168–174 (2010).

    Article  CAS  Google Scholar 

  19. Carr, C.M. & Rizo, J. At the junction of SNARE and SM protein function. Curr. Opin. Cell Biol. 22, 488–495 (2010).

    Article  CAS  Google Scholar 

  20. Walter, A.M., Wiederhold, K., Bruns, D., Fasshauer, D. & Sorensen, J.B. Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis. J. Cell Biol. 188, 401–413 (2010).

    Article  CAS  Google Scholar 

  21. Richmond, J.E., Davis, W.S. & Jorgensen, E.M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964 (1999).

    Article  CAS  Google Scholar 

  22. Augustin, I., Rosenmund, C., Sudhof, T.C. & Brose, N. Munc13–1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  Google Scholar 

  23. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA 99, 9037–9042 (2002).

    Article  CAS  Google Scholar 

  24. Aravamudan, B., Fergestad, T., Davis, W.S., Rodesch, C.K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965–971 (1999).

    Article  CAS  Google Scholar 

  25. Koushika, S.P. et al. A post-docking role for active zone protein Rim. Nat. Neurosci. 4, 997–1005 (2001).

    Article  CAS  Google Scholar 

  26. Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).

    Article  CAS  Google Scholar 

  27. Schoch, S. et al. Redundant functions of RIM1α and RIM2α in Ca2+-triggered neurotransmitter release. EMBO J. 25, 5852–5863 (2006).

    Article  CAS  Google Scholar 

  28. Richmond, J.E., Weimer, R.M. & Jorgensen, E.M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412, 338–341 (2001).

    Article  CAS  Google Scholar 

  29. Betz, A., Okamoto, M., Benseler, F. & Brose, N. Direct interaction of the rat unc-13 homologue Munc13–1 with the N terminus of syntaxin. J. Biol. Chem. 272, 2520–2526 (1997).

    Article  CAS  Google Scholar 

  30. Stevens, D.R. et al. Identification of the minimal protein domain required for priming activity of Munc13–1. Curr. Biol. 15, 2243–2248 (2005).

    Article  CAS  Google Scholar 

  31. Madison, J.M., Nurrish, S. & Kaplan, J.M. UNC-13 interaction with syntaxin is required for synaptic transmission. Curr. Biol. 15, 2236–2242 (2005).

    Article  CAS  Google Scholar 

  32. Basu, J. et al. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 12, 1017–1018 (2005).

    Article  CAS  Google Scholar 

  33. Betz, A. et al. Functional interaction of the active zone proteins Munc13–1 and RIM1 in synaptic vesicle priming. Neuron 30, 183–196 (2001).

    Article  CAS  Google Scholar 

  34. Dulubova, I. et al. A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J. 24, 2839–2850 (2005).

    Article  CAS  Google Scholar 

  35. Lu, J. et al. Structural Basis for a Munc13–1 homodimer to Munc13–1/RIM heterodimer switch. PLoS Biol. 4, e192 (2006).

    Article  Google Scholar 

  36. Wang, X. et al. A protein interaction node at the neurotransmitter release site: domains of Aczonin/Piccolo, Bassoon, CAST, and rim converge on the N-terminal domain of Munc13–1. J. Neurosci. 29, 12584–12596 (2009).

    Article  CAS  Google Scholar 

  37. Guan, R., Dai, H. & Rizo, J. Binding of the Munc13–1 MUN domain to membrane-anchored SNARE complexes. Biochemistry 47, 1474–1481 (2008).

    Article  CAS  Google Scholar 

  38. Weninger, K., Bowen, M.E., Choi, U.B., Chu, S. & Brunger, A.T. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16, 308–320 (2008).

    Article  CAS  Google Scholar 

  39. Burkhardt, P., Hattendorf, D.A., Weis, W.I. & Fasshauer, D. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 27, 923–933 (2008).

    Article  CAS  Google Scholar 

  40. Fasshauer, D., Antonin, W., Subramaniam, V. & Jahn, R. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat. Struct. Biol. 9, 144–151 (2002).

    Article  CAS  Google Scholar 

  41. Araç, D., Murphy, T. & Rizo, J. Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy. Biochemistry 42, 2774–2780 (2003).

    Article  Google Scholar 

  42. Ruschak, A.M. & Kay, L.E. Methyl groups as probes of supra-molecular structure, dynamics and function. J. Biomol. NMR 46, 75–87 (2010).

    Article  CAS  Google Scholar 

  43. Brose, N., Hofmann, K., Hata, Y. & Sudhof, T.C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem. 270, 25273–25280 (1995).

    Article  CAS  Google Scholar 

  44. Xu, Y., Su, L. & Rizo, J. Binding of Munc18–1 to synaptobrevin and to the SNARE four-helix bundle. Biochemistry 49, 1568–1576 (2010).

    Article  CAS  Google Scholar 

  45. Xue, M., Ma, C., Craig, T.K., Rosenmund, C. & Rizo, J. The Janus-faced nature of the C2B domain is fundamental for synaptotagmin-1 function. Nat. Struct. Mol. Biol. 15, 1160–1168 (2008).

    Article  CAS  Google Scholar 

  46. Chen, X., Lu, J., Dulubova, I. & Rizo, J. NMR analysis of the closed conformation of syntaxin-1. J. Biomol. NMR 41, 43–54 (2008).

    Article  CAS  Google Scholar 

  47. Dai, H., Shen, N., Arac, D. & Rizo, J.A. Quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. J. Mol. Biol. 367, 848–863 (2007).

    Article  CAS  Google Scholar 

  48. Xue, M. et al. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat. Struct. Mol. Biol. 17, 568–575 (2010).

    Article  CAS  Google Scholar 

  49. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  Google Scholar 

  50. Medine, C.N., Rickman, C., Chamberlain, L.H. & Duncan, R.R. Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. J. Cell Sci. 120, 4407–4415 (2007).

    Article  CAS  Google Scholar 

  51. Shen, J., Rathore, S.S., Khandan, L. & Rothman, J.E. SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion. J. Cell Biol. 190, 55–63 (2010).

    Article  CAS  Google Scholar 

  52. Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002).

    Article  CAS  Google Scholar 

  53. James, D.J., Kowalchyk, J., Daily, N., Petrie, M. & Martin, T.F. CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proc. Natl. Acad. Sci. USA 106, 17308–17313 (2009).

    Article  CAS  Google Scholar 

  54. Liu, Y. et al. Two distinct secretory vesicle-priming steps in adrenal chromaffin cells. J. Cell Biol. 190, 1067–1077 (2010).

    Article  CAS  Google Scholar 

  55. Pei, J., Ma, C., Rizo, J. & Grishin, N.V. Remote homology between Munc13 MUN domain and vesicle tethering complexes. J. Mol. Biol. 391, 509–517 (2009).

    Article  CAS  Google Scholar 

  56. Ren, Y. et al. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139, 1119–1129 (2009).

    Article  CAS  Google Scholar 

  57. Basu, J., Betz, A., Brose, N. & Rosenmund, C. Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J. Neurosci. 27, 1200–1210 (2007).

    Article  CAS  Google Scholar 

  58. Tugarinov, V., Sprangers, R. & Kay, L.E. Line narrowing in methyl-TROSY using zero-quantum 1H-13C NMR spectroscopy. J. Am. Chem. Soc. 126, 4921–4925 (2004).

    Article  CAS  Google Scholar 

  59. Delaglio, F. et al. NMRPipe:a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  60. Johnson, B.A. & Blevins, R.A. NMR View: a computer-program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Sun of the University of Texas Southwestern Medical Center (UT Southwestern) for expert technical assistance, Y. Xu and L. Su (UT Southwestern) for fruitful discussions, M. Rosen (UT Southwestern) and L. Kay (University of Toronto) for advice on NMR experiments and W. Wickner (Dartmouth University) for insightful comments on the manuscript. This work was supported by a postdoctoral fellowship from the American Heart Association (to Y.X.), by Welch foundation grant I-1304 and by US National Institutes of Health grant NS37200 (both to J.R.).

Author information

Authors and Affiliations

Authors

Contributions

C.M. did the kinetic studies of SNARE complex formation. C.M., W.L. and J.R. conducted the NMR experiments. Y.X. did initial biochemical studies of the MUN domain. J.R. wrote the paper.

Corresponding author

Correspondence to Josep Rizo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Notes 1 and 2, and Supplementary Methods (PDF 2304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Li, W., Xu, Y. et al. Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex. Nat Struct Mol Biol 18, 542–549 (2011). https://doi.org/10.1038/nsmb.2047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing